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Abstract—Dispersion properties of surface plasmon polaritons in a semiconductor film with graphene plates
in the far-IR range and the possibility of controlling propagation modes due to the change in the chemical
potential on one or both plates have been investigated. Dispersion relations for the TE- and TM-polarized
waves have been obtained and analyzed, and distributions of the wave field and energy f luxes over the struc-
ture have been constructed. Spectral ranges where the surface-wave group velocity is negative are found.
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1. INTRODUCTION
Properties of surface plasmon polaritons (SPPs)

are known to be basically determined by the character
of dispersion of the material parameters of adjacent
media. In metal–dielectric guiding structures, the
existence of SPPs is caused by the presence of a wide
frequency region, in which the metal permittivity is
negative. The behavior of SPPs in these structures and
the possibility of their practical application were con-
sidered in detail in [1–7]. However, the use of a metal
as the guiding surface inevitably leads to fast damping
and small free paths of polaritons. In this context,
structures based on semiconductor materials, in which
surface waves can also exist below the plasma fre-
quency and their parameters can be controlled, may
be of great interest [8–11].

Currently, graphene and various related structures
are considered as promising materials for photonics.
The physical properties of graphene structures may
differ significantly from those of structures based on
other materials because of the specific features of
graphene conductivity dispersion [12–18]. The guid-
ing properties of graphene structures, which can retain
localized plasmon modes in a wide frequency range
(from THz to optical region) both on a graphene
monolayer and on two or more its layers separated by
insulator layers, are of great importance in practice
[19–22].

In this paper, we report the results of studying the
conditions of existence of SPPs in a thin semiconduc-
tor film with graphene layers deposited at both sides
and analyzing the possibility of control of their disper-
sion characteristics by changing the graphene chemi-
cal potential (CP), as well as showing the possibility of

significant slowing-down of the waves propagating in
the structure and achievement of negative values of
their group velocity.

2. MATERIAL PARAMETERS
OF THE STRUCTURE

Propagation of SPPs will be considered in the
structure consisting of a thin, lightly doped semicon-
ductor film with thickness d with a graphene layer
deposited on both surfaces (or one surface). The film
with graphene layers is between two media with fre-
quency-independent permittivities ε1 and ε3. The
semiconductor permittivity within the Drude–
Lorentz approximation can be presented in the form

(1)

where ε1 is the lattice contribution, ωp is the plasma
frequency, and γ is the relaxation rate [16]. The per-
meabilities of all media are assumed to be unity.

The frequency dependence of the real and imagi-
nary components of the surface conductivity of doped
graphene σ = σ' + iσ'' within the Kubo model is deter-
mined by the relations [15, 17]
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Fig. 1. Frequency dependences of the real and imaginary
parts of the graphene surface conductivity at μ1, 3 = 0, 0.1,
and 0.3 eV (curves 1–3, respectively).
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where σ0 = e2/  is the fundamental (static) graphene
conductivity, e is the elementary charge,  is Planck’s
constant, kB is the Boltzmann constant, T is tempera-
ture, and μ =  is the CP (n0 is the charge-car-
rier concentration and νF is the Fermi velocity in
graphene). Figure 1 shows the frequency dependences
of the real and imaginary components of the graphene
surface conductivity plotted in accordance with
expressions (2) for temperature T = 300 K and CP val-
ues μ = 0, 0.1, and 0.3 eV (curves 1–3, respectively).
The CP value in an experiment can be efficiently con-
trolled by an external electric field and temperature
[18].

3. WAVE FIELDS
AND DISPERSION RELATION

Let us assume that linearly polarized localized
waves of two types—TM and TE with the field compo-
nents (Ex, Hy, Ez) and (Hx, Ey, Hz), respectively—can
propagate in the structure under study along the OX
axis oriented parallel to the interface. Each of these
components depends on time and coordinates as fol-
lows:

(3)

where Fa(z) are the profile functions, β is the propaga-
tion constant, and ω is frequency. The equations for
the wave-field profile functions in each medium ( j =
1, 2, 3) have the form

(4)

Here, Fy = Hy for the TM wave, Fy = Ey for the TE
wave, and transverse wave-vector components are qj =

 (k0 = ω/c and c is the speed of light in vac-
uum). The qj values characterize the wave type and
penetration depth of the surface-wave (SW) field into
the substrate and coating. The necessary conditions of
existence of the waveguide mode in the structure are
inequalities Re  > 0, which ensure exponential falloff
of the wave-field amplitude while moving away from
the interface. The inequalities β' > 0 and β'' > 0 must
also be satisfied; the former indicates the positivity of
the wave phase velocity in the structure, while the lat-
ter indicates the absence of amplification. The exis-
tence of the SW in the structure is determined by the
condition Re  = Re(β2 – ) > 0; when this
inequality is invalid, waveguide modes may propagate
in the structure.
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The solution to Eq. (4) for the surface TM wave can
be written as

(5)

To determine coefficients Aj entering (5) and find the
dispersion relation, we use the boundary conditions
for tangential components of the electric and magnetic
fields at z = 0, d:

(6)

To solve these equations, one should take into account
the following relationships between the wave-field
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Fig. 2. Frequency dependences of the propagation con-
stant for TE waves at d = 0 nm; dotted curves 1' and 2 ' cor-
respond to the semiconductor photon line β = 
and the cutoff line β = , respectively.
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components for the TM and TE waves, respectively:

(7)

With allowance for (5)–(7), we find the following dis-
persion relations for the corresponding wave types:

(8)

Taking into account the complexity of the parameters
entering these equations, the latter determine the rela-
tionship between the real and imaginary components
of the wave number β = β' – iβ'' and the electromag-
netic-wave frequency. Equations (8) are written for the
case of different conductivities of the graphene layers.
In the absence of graphene layers, σ1 = σ3 = 0, and
Eqs. (8) are reduced to the standard dispersion rela-
tions for SWs in a dielectric waveguide [4, 19]. For
symmetric plates (ε1 = ε3 = ε and σ1 = σ3 = σ), these
equations take the simpler form:

(9)

where q1 = q3 = q. The dispersion relation for TE was
written taking into account that the permeabilities of
all media equal unity.

4. NUMERICAL ANALYSIS
The results of the numerical analysis of SW propa-

gation modes in the structure under consideration are
given below. The dielectric response of the semicon-
ductor layer is determined by expression (1), in which
the static permittivity is εl = 10.9, the plasma fre-
quency is ωp = 2.07 × 1013 s–1, and the carrier relax-
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ation rate is γ = 0.05ωp. Hereinafter, we assume that
the film with the graphene layers is in vacuum (there-
fore, ε1 = ε3 = 1).

Figure 2 shows the dispersion relations, which are
the solution to Eq. (7) for the TE wave at the wave-
guiding-layer thickness d = 10 nm. The propagation
constant β' is normalized to the quantity kT = kBT/hc,
the value of which is kT = 1314.24 cm–1 for the operat-
ing temperature T = 300 K. Dotted curves 1' and 2 '
correspond to the dependences β =  and β =

, which have the meaning of a photon line in
unbounded semiconductor and a cutoff line of a pla-
nar waveguide. Above the plasma frequency, these
curves limit the domain of existence of the waveguide
modes of this waveguide. Below the plasma frequency
in the structure, there are no solutions corresponding
to the waveguide and surface modes. The dashed line
corresponds to the dependence β = , which is a
photon line for insulator with permittivity εl. Thus, it
can be seen in the figure that the solutions to the dis-
persion equations for the TE waves are not imple-
mented in the region of negative semiconductor per-
mittivity. The reason is that the only component of the
wave electric field (in the case of TE wave) makes elec-
trons to oscillate across the wave-propagation direc-
tion. Here, the excitation of plasmons—quanta of lon-
gitudinal oscillations of the electron plasma (i.e.,
directed along the electromagnetic-wave propagation
direction)—is hindered.

In the domain of existence of the waveguide modes
(ω > ωp), there are two different solutions to these
equations, one of which practically coincides with cut-
off line 2 and is a zero mode of the planar waveguide.
The second solution coincides with the dependence

ε ω0 2( )k
ε0k
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Fig. 3. Frequency dependences of the real and imaginary
parts of the propagation constant of the surface TM wave
at μ1, 3 = 0.3 eV and semiconductor film thickness d = 10,
50, 100, and 500 nm (curves 1–4, respectively).
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Fig. 4. Frequency dependences of the propagation con-
stant and squared transverse wave-vector component at
μ1, 3 = 0, 0.1, and 0.3 eV (solid curves 1–3) and μ1 = 0 eV
and μ3 = 0, 0.1, and 0.3 eV (dotted curves 1–3); the dashed
curve corresponds to the case without graphene.
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β =  (curve 1) and is an analog of the solution
obtained in [20] for a dielectric planar waveguide with
graphene plates. A distinctive feature of this wave is
fulfillment of the condition Re  = 0 for any fre-
quency in this range. With an increase in the semicon-
ductor layer thickness, no surface modes are imple-
mented in the frequency region below the plasma fre-
quency.

Let us now consider the propagation of the TM-
polarized wave in the structure. Figure 3 shows the
dependences of the real and imaginary components of
the propagation constant of the surface TM wave on
frequency, which are solutions to Eq. (9) at the
graphene-layer CP μ1 = μ3 = 0.3 eV and film thick-
nesses d = 10, 50, 100, and 500 nm (curves 1–4). The
solutions exist in the region of negativity of (ω),
which is the condition of existence of the wave local-
ized at the interface. In this region, the propagation
constant achieves a maximum at frequency ωcr deter-
mined by the equality dβ'/dω = 0. The range of values
for each component of the propagation constant in the
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2
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entire frequency range significantly decreases with an
increase in the film thickness. Note that the parameter
β'' ~ 1/γ (γ is the surface polariton free path) is smaller
than β' ~ 1/λ (λ is the wavelength) by two orders of
magnitude in a rather wide frequency range below the
plasma frequency ωp = 2.07 × 1013 s–1. At frequencies
ω > ωp, the wave propagation length sharply decreases,
and β' tends to the cutoff line.

Important characteristics of the wave field in the
structure are transverse wave-vector components q1, 3.
The existence of the SW in a certain frequency region
is indicated by the positivity of parameter Re(q1, 3)2. At
the same time, the quantity δ1, 3 = 1/  determines the
penetration depth of the SW wave field into each
medium adjacent to the waveguiding layer. The fre-
quency dependences of the real components of the
propagation constant and squared transverse wave-
vector component of the surface TM wave for two-
and one-sided CP variations (solid and dotted curves)
are shown in Fig. 4 for the film thickness d = 10 nm.

1,3'q
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Fig. 5. Field distributions Hy and Ez of the TM wave over
the structure cross section at μ1, 3 = 0 and 0.3 eV (curves 1
and 2, respectively), d = 10 nm, and ω = 0.7 × 1013 s–1.
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Fig. 6. Frequency dependences of the group and phase
velocities of the TM wave at μ1, 3 = 0, 0.1, and 0.3 eV
(curves 1–3, respectively); the dashed curve corresponds
to the case without graphene.
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In the first case, μ1 = μ3; in the second case, μ1 = 0;
and μ3 = 0, 0.1, and 0.3 eV in both cases (curves 1–3,
respectively). The dashed line corresponds to the dis-
persion of the structure without graphene layers.

It can be seen in the presented dependences that,
below the plasma frequency, the function β'(ω) is
monotonically decreasing in the most part of the
domain of existence of the SW, which is indicative of
the negativity of the SW group velocity (in the absence
of graphene, the group velocity remains positive). The
range of values of the parameters under consideration
decreases in the entire frequency range with an
increase in the CP. It can also be seen that the mini-
mum SW location depth in each medium is observed
in the region of maximum propagation constants,
whereas the maximum location depth is near the plas-
mon resonance. Above the plasma frequency, the
imaginary part of the propagation constant sharply
increases, and the quantity Re(q1, 3)2 becomes nega-
tive. The reason is that the semiconductor permittivity
becomes positive in this region, and the SW is trans-
formed into a radiative wave. The propagation length
PHY
of this wave is small, and the most part of its energy is
emitted to the coating layers and partially absorbed by
free carriers in semiconductor and graphene. The cri-
terion of SW transformation into a bulk wave can be
assumed to be validity of the inequalities δd  ,
where λ = 2πc/ω is the wavelength in vacuum. The
waveguide modes cannot exist in the structure as well,
because the chosen waveguiding-layer thicknesses are
much smaller than the wavelength in the semiconduc-
tor (d  ).

Figure 5 shows the distributions of the magnetic
and electric SW fields over the structure cross section
corresponding to the frequency ω = 0.7 × 1013 s–1, d =
10 nm, and CP values μ1 = μ3 = 0 and 0.3 eV (curves 1
and 2). At symmetric CP values, the component dis-
tributions Hy(z) and Ez(z) are symmetric with respect
to the structure, while Ex(z) is antisymmetric (dotted
line). The presence of the graphene layers results in
the discontinuity of the magnetic field at the wave-

� λ ε/ d

� λ ε2/
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Fig. 7. Distributions of the longitudinal Sx and transverse
Sz components of the energy f lux density at μ1, 3 = 0 and
0.3 eV (curves 1 and 2, respectively).
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guiding-layer boundaries. At μ1 ≠ μ3, the symmetry in
the field distribution disappears. The wave-field dis-
tribution in the structure and its dispersion properties
can be significantly modified by changing the CP
value.

Let us now consider the frequency dependences of
the characteristic SW velocities, which were plotted
using the CP value of μ1 = μ3 = 0, 0.1, and 0.3 eV
(curves 1–3, respectively); the dashed line corre-
sponds to the structure without graphene layers
(Fig. 6), for which the group velocity  = dω/dβ' is
positive in the frequency range under consideration.
The SW group velocity takes positive values in the
region below the critical frequency, corresponding to
the maximum of the dispersion curve β'(ω), and neg-
ative values for frequencies ω > ωcr. The group velocity
is lower than the speed of light in vacuum by two or
more orders of magnitude far from ωcr and asymptoti-
cally increases at ω → ωcr. At ω → ωp, the group veloc-
ity tends to zero, i.e., there is significant slowing down
of the SW. An increase in the CP leads to a rise in the
magnitude of the group velocity.

vg
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A slow increase in the phase velocity  = ω/β' is
observed far from ωp; as for the group velocity,  is
lower than the speed of light in vacuum by two or more
orders of magnitude. This parameter sharply increases
in a narrow spectral range near the plasma frequency.

The energy characteristic of the wave process with
allowance for its harmonic time dependence is the
Poynting vector S = (c/8π)Re(E × H*) determining
(in the case under consideration) period-averaged SW
energy f lux density. The presence of the transverse and
longitudinal electric-field components leads to the
fact that vector S also has the longitudinal Sx and
transverse Sz components. Figure 7 shows the distri-
butions of these parameters (normalized to S0 =

) over the structure, obtained for d = 10 nm,
ω = 0.7 × 1013 s–1, and μ1 = μ3 = 0 and 0.3 eV (cur-
ves 1 and 2, respectively). The f lux component Sx is
distributed symmetrically over the structure and has a
negative sign (i.e., it is directed opposite to the phase
velocity), whereas the component Sz is distributed
antisymmetrically. It can be seen that there is no trans-
verse f lux component in the central cross section of
the structure; while moving away from it, the f lux
component Sz increases, thus transferring some
energy to the boundaries of the structure (i.e., facili-
tates its localization).

5. CONCLUSIONS
Specific features of SW propagation in a semicon-

ductor layer between two graphene layers were investi-
gated. The dispersion relations for intrinsic TM and
TE waves in the structure were obtained based on the
solution of the boundary problem. Proceeding from
the numerical analysis of the dispersion relations, the
frequency dependences of the propagation constant
and group and phase velocities, as well as the distribu-
tions of the wave fields and energy f luxes, were plotted
for the frequency region below the plasma frequency.
It was shown that, in the region of negative semicon-
ductor permittivities, there are no solutions corre-
sponding to the surface TE waves in the considered
structure. For surface TM waves, the group velocity
takes positive values in the region below the critical
frequency corresponding to the maximum in the dis-
persion curve β'(ω) and negative values for frequencies
ω > ωp. Far from ωcr, the group velocity is lower than
the speed of light in vacuum by two or more orders of
magnitude, i.e., the SW is significantly slowed down.
The increase in the graphene-layer CP leads to a rise
in the magnitude of the group velocity. The longitudi-
nal component of the energy f lux Sx is distributed
symmetrically over the structure and has a negative
sign in the region ω > ωcr (i.e., it is directed opposite
to the phase velocity). The analysis showed the possi-
bility of controlling the SW dispersion characteristics
by changing the graphene-layer CP, plasma fre-

vph

vph

π2
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quency, and semiconductor layer thickness. Note also
that SWs in the structure can be efficiently controlled
using an external magnetic field, which strongly
affects not only the semiconductor state but also the
graphene state. However, these questions require sep-
arate consideration.
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