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ABSTRACT  

 Linewidth narrowing and stabilization of semiconductor laser light generation is of great research interest governed by 

the huge demand of compact cost-effective narrow-band laser sources for many potential applications. In 2012 we have 

demonstrated a simple kHz-linewidth laser just splicing a standard distributed feedback (DFB) laser diode and a few 

passive telecommunication components. The principle of operation employs the mechanism of self-injection locking that 

significantly improves DFB laser performance. While a typical linewidth of free-running DFB semiconductor lasers 

ranges from a few to tens MHz, self-injection locking of a DFB laser through an external fiber ring cavity causes a 

drastic reduction of its laser linewidth down to a few kHz. The advantage of the proposed configuration is that the same 

external fiber ring cavity could be used for self-injection locking of a DFB laser and as Brillouin scattering media to 

generate Stokes shifted optical wave. However, a continuous laser operation at two frequencies has not been reported yet 

preventing it from many prosperous photonic applications.  Here, we introduce a simple dual-frequency laser 

configuration. In our approach, the implementation of self-injection locking into the Brillouin ring fiber laser helps to 

maintain coupling between the DFB laser and an external high-Q fiber cavity enabling dual-frequency laser operation. 

Specifically, the same ring fiber cavity is used to generate narrow-band light at the pump frequency (through self-

injection locking mechanism) and narrow-band laser light at Stokes frequency (through stimulated Brillouin scattering). 

The system is supplied by a low-bandwidth active optoelectronic feedback circuit controlled by a low-cost USB-DAQ 

card that helps the laser to maintain the desired operation mode. The fiber configuration reduces the natural Lorentzian 

linewidth of light emitted by the laser at pump and Stokes frequencies down to 270 Hz and 220 Hz, respectively, and 

features a stable 300-Hz-width RF spectrum recorded with the beating of two laser outputs. We have explored key 

features of the laser performance, revealing its stability and applicability to RF harmonic generation of high spectral 

purity as an additional benefit of the proposed technique. 
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1. INTRODUCTION  

Linewidth narrowing and stabilization of semiconductor laser light generation is of great research interest governed 

by a huge demand of compact cost-effective narrow-band laser sources for many potential applications [1-13]. In 2012 

we have demonstrated a simple kHz-linewidth laser just splicing a standard DFB laser diode and a few passive 

telecommunication components [14]. The principle of operation employs the mechanism of self-injection locking that 

significantly improves the DFB laser performance [15-20]. While a typical linewidth of free-running DFB 

semiconductor lasers ranges from a few to tens MHz, self-injection locking of the DFB laser through an external fiber 

ring cavity causes a drastic reduction of the laser linewidth down to a few kHz. The main drawback of this technique is 

its high sensitivity to fluctuations of the configuration parameters and surroundings.  

Several approaches have been performed to stabilize the laser operation in the self-injection locking regime [21-30].  

Once getting locking to the cavity resonance, the laser starts to generate the cavity resonant frequency. Then any slow 
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change of the ring mode frequency (due to environment temperature fluctuations, for example) near the stability point 

causes the same change of the laser frequency. However, a more extended drift of the cavity mode frequency (>10 MHz) 

causes mode-hopping making laser operation temporally unstable. In our previous experiments, a stable laser operation 

has been commonly observed for a few seconds. With precise stabilization of the laser diode current and temperature 

applied in conjugation with the thermal control of the whole fiber configuration this time could be extended to tens of 

minutes and even more [31]. However, these stabilization solutions are technically complicated and rather costly.   

An alternative solution has been proposed recently [32, 33]. We have demonstrated stabilization of semiconductor 

DFB laser in self-injection locking regime implementing an active optoelectronic feedback circuit controlled by a low-

cost USB-DAQ card. In this approach, the narrowing of DFB laser linewidth is still provided by the self-injection-

locking mechanism, whereas the active feedback is used to maintain the laser operation in this regime. Therefore, in 

terms of feedback circuit bandwidth, complexity, and allocated memory, this method is much less consuming than 

optoelectronic systems commonly used with fiber lasers [34, 35].  An advance of the proposed configuration is that the 

same external fiber ring cavity could be used for self-injection locking of the DFB laser and as Brillouin scattering media 

to generate Stokes shifted optical wave. However, a stable laser operation at two frequencies has not been reported yet 

preventing it from many prosperous photonic applications.  

 
Fig. 1. (a) The experimental laser configuration; (b) Brillouin output power (port D) as a function of the DFB laser power at the 

fiber ring input.  

 

It is worth noting that the fiber ring cavity is commonly used to generate Brillouin wave from an external laser diode 

[36-39]. However, the coupling between the DFB laser and the ring fiber cavity remains to be a technically complicated 

and cost consuming task [39, 40]. In this paper, we introduce a simple dual-frequency laser configuration. In our 

approach, the implementation of the self-injection locking mechanism into the Brillouin ring fiber laser helps to maintain 

coupling between the DFB laser and the external fiber cavity enabling dual-frequency laser operation. Specifically, the 

same ring fiber cavity is used to generate narrow-band light at the pump frequency (through self-injection locking 

mechanism) and narrow-band laser light at Stokes frequency (through stimulated Brillouin scattering). The system is 

supplied by a low-bandwidth active optoelectronic feedback circuit controlled by a low-cost USB-DAQ card that helps 

the laser to maintain the desired operation mode. We have explored key features of the laser performance, revealing its 

stability and applicability to RF harmonic generation of high spectral purity as an additional benefit of the proposed 

technique. 

2. EXPERIMENTAL SETUP 

The experimental laser configuration is shown in Fig. 1(a). The semiconductor laser we use is a commercial distributed 

feedback (DFB) laser diode (MITSUBISHI FU-68PDF-V520M27B) assembled within a standard 14-pin butterfly 

package that is coupled to the fiber ring cavity through a circulator. The DFB laser delivering ~15 mW at ~1535.6 nm is 

equipped with a built-in optical isolator attenuating the power of the backward radiation by ∼30 dB. The built-in optical 

isolator eliminates the effects of uncontrollable back reflections and sets the controllable value of the feedback signal 

returned to the DFB laser cavity. The external ring cavity is spliced from two SMF-28 couplers (99/1) and (99/1). In 

order to implement the self-injection locking mechanism, the coupler redirects a part of the light circulating inside the 

cavity clockwise (CW) through the circulator (OC) back into the DFB laser thus providing passive feedback to the DFB 

laser operation. The fiber configuration is spliced from standard telecom components and placed into a foam box to 

reduce the influence of the laboratory environment. No additional thermal control of the box is applied.   
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Comparing the reported laser configuration [32] two crucial modifications have been implemented in [33] to achieve 

a stable dual-frequency lasing. The first modification concerns the operation of the active feedback circuit. We have 

implemented a piezo-control of the fiber feedback loop instead of the DFB laser current adjustment used earlier. A 

piezo-activator is attached to the feedback loop fiber as shown in Fig.1(a). It is driven by a low-cost USB Multifunction 

DAQ (National Instrument NI USB-6009) connected to a PC. The laser power detected at the output B serves as an error 

signal. The DAQ manages to keep it as low as possible adjusting the DAQ output voltage applied to the piezo-activator 

that in its turn affects the length of the optical fiber loop. With a change of the DAQ output voltage in the range 0 - 5 V, 

the piezo-stretcher maintains a stable laser operation in self-injection locking regime keeping the laser generated 

frequency locked to the ring cavity resonance peak that always slowly walks due to environment temperature 

fluctuations. We have found the new control mechanism to be more practical, exhibiting much better stability and 

reproductivity. In particular, it significantly expands the range of the laser frequency drifts acceptable for stabilized laser 

operation in the self-injection locking regime. 

 

The second modification relates to the choice of the ring cavity length. We generate Brillouin laser light with the 

same fiber ring cavity that is already used for self-injection locking. Inside the ring the radiation of the DFB laser at L  

propagating CW is used to pump the Brillouin wave at S L SBS = −  generating in CCW direction, where SBS  is the 

Brillouin frequency shift. Comparing our previous laser configuration [32] the ring fiber length in [33] has been 

increased in 5 times (up to 20 m) to decrease the Brillouin threshold. Besides, the ring cavity length has been precisely 

adjusted with the single-cut [41, 42] to get perfect matching between the Brillouin frequency shift  SBS  and the cavity 

free spectrum range (FSR), so that SBS mFSR = , where m is an integer. With the perfectly adjusted fiber ring cavity 

active stabilization of lasing at the frequency L  ensures stabilization of lasing at the frequency S .  

 

For the configuration in Fig.1(a), the lasing at the locked pump frequency L  could be monitored through the ports 

A, B, C and through the ports D, E at the Brillouin frequency S . The ports A and D are used as the main laser outputs. 

The reflected signal from the port B is detected by a fast photodetector and is used as an error signal for the active 

feedback operation. The ports C and E are used as control points for laser characterization. While the DFB laser operates 

in a free-running regime, its linewidth is estimated to be ~10 MHz, the most of the DFB laser power is reflected by the 

ring cavity and released through the port B. The power recorded at the port C is negligible. Self-injection-locking causes 

drastic narrowing the laser linewidth down to kHz range leading to a decrease of the power released through the port B 

and an increase of the power emitted through the port C. So, monitoring the reflected power emitted through the ports B 

(the error signal) allows evaluating the efficiency of the laser linewidth narrowing through the self-injection locking 

mechanism and helping to maintain the laser operation in the self-injection-locking regime avoiding mode-hopping. This 

task is assigned to the optoelectronic feedback circuit. When CW power inside the ring cavity exceeds the Brillouin 

lasing threshold, the contra-propagating CCW wave is emitted through the port D. Fig. 1 (b) shows the experimental 

dependence of the laser power emitted at the Stokes frequency and detected in port D on the laser power emitted at the 

pump frequency detected in port A. No power conversion to the Stokes power occurs below the pump threshold power 

of 2.9 mW. Above the threshold the pump-to-Stokes conversion efficiency is estimated to be ~3.3% that is well enough 

for some potential laser applications (e.g. Brillouin sensing). 

 

3. RESULTS AND DISCUSSION 
 

Fig. 2 compares the laser operation with and without the active feedback. Typical oscilloscope traces recorded with 

the reflected, transmitted and Brillouin powers (ports B, C, and D, respectively) without active feedback are shown in 

Fig. 2 (a). The observed behavior can be interpreted in terms of the laser frequency deviation from the ring cavity 

resonance determined by the phase shift the light acquires in the feedback loop fiber. The higher laser frequency 

deviation the higher error signal 
BP  recorded at the port B. Driven by environment noise the ring resonance frequency 

slowly varies in time followed by the transmitted power 
BP  walking between its minimal and maximal values. When 

approaching the minimum value, the recorded 
BP  keeps it for a while highlighting the laser operation in the self-

injection locking regime. In this regime the laser works against the temperature fluctuations pulling the laser frequency 

towards the cavity resonant peak. An increase of the CW laser power circulating inside the ring above the Brillouin 

lasing threshold causes lasing of the contra-propagating Brillouin CCW wave at 
S  emitted through the port D. Effective 
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conversion to the Brillouin wave limits the transmitted laser power recorded at the port D by its Brillouin threshold 

value. When the CW pump power inside the ring falls below the Brillouin threshold the Brillouin lasing stops and the 

signal 
BP  increases approaching its maximal value, while spontaneous noise causes mode-hopping events disturbing the 

laser stability and impairing the laser performance characteristics.  

 

  

 
Fig. 2.  Typical oscilloscope traces of the reflected (yellow curves), transmitted (blue curves) and Brillouin (red curve) optical power 

and active feedback control  signal (green curve); (a) laser operation with optical feedback only; (b) optical and electronic feedbacks - 

responses on knock on the fiber ring; (c) optical and electronic feedbacks - responses on a jump of the feedback control signal; (d) a 

zoom of oscilloscope traces (c). The dashed lines mark zero levels. 

 

The laser operation stabilized with the active feedback could be seen in Fig. 2 (b, c). The optoelectronic feedback 

circuit maintains the reflected signal recorded through port B (error signal) fixed to its minimal value. So, the DFB laser 

frequency is always locked to the ring cavity transmission resonant peak providing a stable laser operation at the pump 

and Brillouin frequencies recorded at ports A and D, respectively. One can see that all traces are almost flat exhibiting 

with less than ~1 % fluctuations, demonstrating that the self-injection locking mechanism in combination with 

optoelectronic feedback circuit perfectly works against the environment noise enabling stable laser operation at two 

locked frequencies. 

A few experiments have been performed for characterizing the laser operation in the stabilized regime. We have 

determined the time constant associated with the feedback mechanism. First, we have measured the error signal response 

to a short pencil kick on the fiber configuration. The system response is depicted in Fig. 2 (b). When the fiber cavity is 

perturbed, it may exhibit a variety of dynamical behaviors. Clearly, the system behaves as a high-pass filter and so high 

frequency acoustic perturbations cannot be compensated by the slow acting feedback. Following these perturbations, the 

error signal (and the corresponding lasing frequency) makes a number of stochastic fluctuations until recoils and returns 

to the original point in an exponentially decaying manner. The typical time constant of the feedback mechanism is 

P~0.2 s. The Brillouin signal is more sensitive, it stops almost immediately after a kick and starts to restore only after 

the complete restoration of the pump power. A typical time constant for Brillouin power restoration is much shorter 

B~0.05 s.  

Fig. 2 (c, d) shows the system response on a step change of the active feedback control signal forcing the DFB laser 

to switch to another mode (see a jump in electrical feedback signal). One can see that, in this case, the laser pump 

accepts the frequency change providing direct exponential relaxation to the new state with the same time constant of 

P~0.2 s. Brillouin power is not generated during the whole laser transition but starts to restore with the time constant of 

B~0.05 s immediately after. The specific features of the curves shown in Fig.2 are in good agreement with the 

theoretical predictions based on the self-injection locking and Brillouin lasing models [27, 38]. 
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Fig. 3.  Typical state of polarization trajectories on Poincare sphere for the reflected pump (port B, a-c) and Brillouin (port D, d-f) 

signals. (a, d) laser operation with optical feedback only; (b, e) optical and electronic feedbacks - responses on jump of the active 

feedback control signal; (c, f) optical and electronic feedbacks without perturbations. 
 

To evaluate the contribution of the polarization dynamics to the stabilization of the laser operation, we use data 

recorded by a polarization analyzer (HP 8509A\B) from ports B, D. The polarization measurements for the laser 

operation without and with active feedback are shown in Fig.3. The Stokes parameters are related to the polarization 

attractor at the Poincaré sphere in the form of a fixed point for a few observed laser regimes. If the degree of polarization 

(DOP) is close to 100% then the fixed point at the Poincaré sphere indicates a stable operation. For the laser operation 

without the active feedback the pump wave attractor makes a precession with a small radius around a single point [Fig.3 

(a)], its DOP is estimated to be ~98%. The polarization dynamics of the Brillouin signal (when it is generated) takes the 

form of unpredictable wandering [Fig.3 (d)]. In contrast, for the laser stabilized with the active feedback, attractors for 

both laser outputs are close to two fixed points of the Poincaré sphere, highlighting very high DOP estimated to be 100% 

[Fig.3 (c, f)]. Fig.3 also presents the polarization dynamics of the stabilized laser disturbed by the piezo-actuator (see, 

Fig. 2 (b, e)). During the laser restoring after a jump of the feedback control signal, the pump wave attractor exhibits 

behavior [Fig.3 (b)] similar to that of the laser without the active feedback [Fig.3 (a)]. It makes a precession around a 

single point with a small radius, its DOP is estimated to be ~97%. However, restoration of the Stokes wave is 

accompanied by the precession of its attractor with a rather large radius approaching the final point [Fig.3 (e)], and its 

DOP is estimated to be ~60%. The DOP of the pump radiation measured in the port A does not depends on the DFB 

laser operation mode and is always close to ~100%. 

 
Fig. 4. Delayed self-heterodyne spectra of the laser radiation emitted through the port A at pump laser frequency (a) and the port 

(D) at Brillouin frequency (b).  

 

A delayed self-heterodyne technique has been employed to measure the linewidths of radiation emitted by the 

stabilized laser configuration through two outputs. An all-fiber unbalanced Mach–Zehnder interferometer with a 55 km 
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delay fiber and 25 MHz phase modulator supplied by a polarization controller is used for this purpose. The beat signal 

from the interferometer is detected by a ~5 GHz photodiode and analyzed by an RF spectrum analyzer (FSH8, Rohde & 

Schwarz). Self-heterodyne RF spectra of the stabilized laser in the pump and Brillouin channels are shown in Fig.4. The 

commonly used approach is that the laser full linewidth is half of the full-width half-maximum (FWHM) of the 

Lorentzian fit of the measured RF spectrum [43]. This estimation gives 1100 Hz and 800 Hz for the linewidths of the 

pump and Brillouin laser, respectively. However, more detailed analysis is required, since the laser coherence length (for 

both outputs) is much longer than the path difference of the interferometer [44]. (Note, for this reason, the measured 

spectrum features oscillations on the wings.) In a sub-coherent regime, the used method underestimates the effects of 1/f 

noise and overestimates the effect of the white spectrum, responsible for Gaussian and natural Lorentzian linewidths, 

respectively [45]. The main cause of the 1/f frequency noise in fiber lasers is temperature fluctuations induced by pump 

noise [46]. Since the 1/f noise is partially filtered out by the interferometer [47], we can just estimate the laser Gaussian 

linewidths to be between ~800 Hz and ~3kHz for both laser outputs. Here, the lower limit is determined by the measured 

3-dB spectrum width (~1200Hz) with the deconvolution factor of 2  and the upper limit is set by the resolution linked 

to the delay fiber length. Note, the 1/f noise could be probably eliminated using low noise pumping [46]. The measured 

20-dB spectrum widths are ~5350 Hz and 4350 Hz for the pump and Brillouin laser radiations. They are weakly affected 

by the Gaussian noise and in sub-coherent regime overestimates the FWHM Lorentzian linewidth with the 

deconvolution factor 2 99  [48]. Therefore, the natural Lorentzian linewidth is found to be narrower than 270 Hz and 

220 Hz for the pump and Brillouin laser outputs, respectively.  

 

 
Fig. 5. Noise performance of the laser. a) Phase noise; b) Rational Intensity noise (RIN). 

 

The noise performance of the stabilized self-injection-locked laser configuration is presented in Fig.5.  Fig. 5a) 

depicts power spectral density (PSD) of the phase noise for the Stokes, pump, transmitted and reflected radiations 

measured with a spectrum analyzer (Agilent N9320A) in the radio-frequency range of 10-100 kHz. In this range the 

effect of the servo bandwidth of our electronic system of the laser performance is negligible. Following the method 

described in [49-51], the PSDs have been obtained by employing self-heterodyne technique using a fiber unbalanced 

Mach–Zehnder interferometer with a 1.3 km delay fiber (5.76 s) and 20 MHz frequency shifter. One can see that active 

stabilization minimizes the phase noise in all measured ports. In particular, PSD measured with pump laser output (port 

A) is by ~ (35-40) dBc ∕ Hz lower comparing with free-running laser. The PSD of the generated Brillouin radiation is by 

~ (7-15) dBc ∕ Hz lower comparing the pump. Due to the filtering effect of the ring cavity the pump radiation passing 

through the ring (transmitted and reflected) has ~ (7-15) dBc ∕ Hz lower PSD than that measured with the direct laser 

output.  

Fig. 5 (b) presents the relative intensity noise (RIN) measured with a lock-in amplifier SRS510 in 1-100 kHz 

frequency interval.  One can see the RIN of the stabilized laser is lower by ~ (5 -10) dB comparing the free-running 

laser.  At the same time, the relative intensity noise of the Stokes radiation is higher by 30-40 dB than the pump noise, 

especially at lower frequencies. We explain such an increase by an exponential dependence of the Brillouin wave 

amplification inside the fiber ring cavity on the pump wave power that is reflected in the pump-to-Stokes RIN transfer 

function. One can see, that the additional RIN induced by the Brillouin lasing in the fiber ring cavity is transferred into 

the reflected and transmitted pump RINs as well leading to their increase by 30-40 dB in respect to the stabilized pump 

laser wave.  
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Finally, the RF beating spectrum has been recorded with two laser outputs mixed in a single fiber and evaluated in 

terms of the peak frequency and the spectrum linewidth stabilities. A typical RF beating spectrum measured by the 

signal analyzer (Keysight N9040B, 50GHz) with an acquisition time of ~20 ms is shown in Fig. 6 (a). The spectrum is 

centered at 10946.309820 MHz that corresponds to the Brillouin frequency shift in the ring cavity fiber and exhibit a 

linewidth of ~290 Hz that is in good agreement with the estimations of the optical Lorentz linewidth reported above (see, 

Fig.3). Recording of the RF spectrum with longer acquisition time leads to its remarkable broadening due to the long-

term drift of the laser frequency affected by the environmental noise. A typical RF beating spectrum acquired with 

averaging over ~5 min exhibits a linewidth of ~1800 Hz as shown in Fig. 6 (b). The laser operation in dual frequency 

mode allows us to monitor the laser frequency drift by recording the RF beat peak frequency. Indeed, the generated laser 

frequencies 
L  and 

S  are both the resonant ring cavity modes and so their drifts 
L  and 

S  relate to a change of the 

ring cavity optical length ( )RnL  caused by the environmental noise. The measured deviations of the Brillouin 

frequency shift 
B L S  = −  is determined by the drifts of the laser frequencies 

L  and 
S , and so all of them are 

linked to ( )RnL  as: 

( )RSL B

L S B R

nL

nL

 

  
= = = −       (1) 

 
Fig. 6. RF beat spectrum evolution. a) RF beat spectrum acquired for ~20ms; b) RF beat spectrum averaged for 5 min (b) and c) 

evolution of the RF beat spectrum peak frequency measured each minute during 60 minutes. 

 

Thus, the laser long-term frequency drift ( )L B L B   =  is followed by the drift of the beat spectrum peak 

frequency 
B  enabling 

L  monitoring. A typical evolution of the RF spectrum peak frequency recorded during 1h 

(one per minute) is shown in Fig. 6 (c). One can see, it increases monotonically with a typical rate of 0.5 kHz/min 

passing a range of ~30 kHz. The corresponding drift of the laser frequency occurs within the range of ~300 MHz and has 

a typical rate of ∼5.8 MHz/min that is in a good agreement with the value reported earlier under similar conditions [31]. 

Note, our spliced laser configuration is placed into a foam box to reduce the influence of the laboratory environment. No 

additional thermal control or any particular vibration and acoustics insulation protections were used.  
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4. CONCLUSION 

In conclusion, we have introduced a simple dual-frequency laser based on a DFB laser coupled to an all-fiber ring 

cavity and working in self-injection-locked mode. In our laser configuration, the same ring fiber cavity is exploited both 

for self-injection locking of a DFB laser and for the generation of Stokes light via stimulated Brillouin scattering. A low-

cost USB-DAQ is used to stabilize the system preventing mode-hopping. Importantly, a stable laser operation at two 

mutually locked frequencies is provided by the self-injection locking mechanism, while the active feedback loop just 

supports this regime. Besides, the self-injection locking mechanism maintains permanent coupling between the DFB 

laser and the external fiber cavity. These results enhance our understanding of the self-injection-locking mechanism in 

semiconductor lasers and open up new possibilities for manipulating and controlling their properties. In particular, the 

new ability to generate two locked frequencies is attractive for many laser applications, including high-resolution 

spectroscopy, phase coherent optical communications, distributed fiber optics sensing, coherent optical spectrum 

analyzer, and microwave photonics [52-64]. In particular, the reported laser characteristics are well superior to the 

requirements to the laser modules commonly used with BOTDA. In nearest future, translating the proposed laser design 

to integrated photonics [65-72] will dramatically reduce cost and footprint for many applications such as ultra-high 

capacity fiber and data center networks, atomic clocks, and microwave photonics. 
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