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ABSTRACT  

We report on linewidth narrowing and stabilization of semiconductor DFB laser implemented through its self-injection 

locking to an external fiber ring cavity in conjunction with an active optoelectronic feedback circuit controlled by a 

simple low-cost USB-DAQ card. The system enables narrowing of the DFB laser linewidth below ~0.5 kHz and 

drastically reduced the laser phase noise. Specifically, the laser configuration is fully spliced from the polarization 

maintaining (PM) single-mode optical fiber that exhibits significantly improved stability against the environment noise. 

Drastic narrowing of the DFB laser linewidth down to ~310 Hz and a phase noise less than –100 dBc/Hz (>30 kHz) are 

achieved with the PM fiber ring cavity built from a single fiber coupler. The reported PM laser configuration is of great 

interest for many laser applications where a narrow sub-kHz linewidth, simple design and low cost are important. 
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1. INTRODUCTION 

 
Compact cost-effective laser sources with tunable coherency are of the great demand for a number of potential 

applications 1-9. Among them are high-resolution spectroscopy, phase-coherent optical communications, microwave 

photonics, coherent optical spectrum analyze, and distributed fiber optics sensing 10-24. Therefore, linewidth narrowing 

and stabilization of semiconductor laser light generation are of topical research interest. Linewidths of free-running DFB 

semiconductor lasers typically range from a few MHz. The self-injection locking to an external fiber cavity is an 

efficient method enabling drastic linewidth narrowing and self-stabilization of semiconductor lasers. To provide the 

effect, a part of the optical radiation emitted by the laser is returned back into the laser cavity thus decreasing the laser 

threshold at the locked frequency 25. This relatively simple technique allows to design cost-effective narrow-band laser 

sources based on standard laser diodes making them an attractive solution in comparison with conventional laser systems 

based on active feedback. Commonly, self-injection locking laser configurations comprise a narrow bandpass optical 

filter inside a weak feedback loop 26. Current progress in this topic is associated with the use of micro-cavity techniques 
27, 28 . Employing optical whispering-gallery-mode resonators the linewidth of the semiconductor laser could be 

decreased down to sub-kHz range in a compact and robust configuration. However, the external cavities used in such 

systems possessing huge Q-factors (∼1011) are not flexible for adjustment and require rather complicate coupling of fiber 

and non-fiber elements.  

Alternatively, all-fiber cavity solution based on long but relatively low-Q-factor fiber-based resonators is able to 

provide comparable semiconductor laser line narrowing with a low-cost fiber configuration built from standard telecom 

components 29-33. In particular, such solutions are of great interest for RF-generation and Brillouin distributed sensing, 

the same fiber cavity can serve as a nonlinear medium to generate Brillouin frequency-shifted light 34-53. We have 

demonstrated significant line narrowing (more than 1000 times) of a conventional low-cost DFB laser locked to an 

external fiber optic ring resonator 33. Once locking, any slow change of interferometer mode frequency (due to 

temperature fluctuations, for example) leads to a simultaneous change of the laser generation frequency. 

The main drawback of this technique is its high sensitivity to fluctuations of the configuration parameters and 

surroundings. Commonly, self-stabilization of the laser operation through injection locking is supported only within a 

limited range of the laser frequency deviations, typically tens of MHz 30. Beyond this range even a minuscule fluctuation 

in the ambient parameters can destabilize lasing causing mode-hopping. As a result, stable laser operation intervals are 

interrupted by short-time jumps in the lasing intensity caused by laser mode-hopping 33. Although the precise 
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stabilization of laser pump current and temperature of fiber configuration allows increasing these intervals up to tens of 

minutes, no simple means permanently stabilizing laser operation in a single longitudinal mode have been reported for a 

while. Rare mode-hopping events still interrupt frequency locking making many practical laser applications 

questionable.  

In this paper, we make few steps forward in comparison with the previously reported narrow-band laser 

configurations. New laser design combines a number of advanced laser linewidth narrowing and stabilization 

mechanisms in a single DFB laser configuration. First, the reported laser configuration is completely spliced from the 

standard telecom PM fiber components. It makes the laser operation much more resistible to an external laser 

perturbations and environment noise. Second, we have used the self-injection locking mechanism in conjugation with an 

additional active optoelectronic feedback circuit extending the range of the laser self-stabilization over ~1GHz 54. 

Importantly, the optoelectronic feedback loop just helps to maintain the regime of passive self-injection-locking that 

makes the major contribution to the laser linewidth narrowing. In terms of the feedback bandwidth, complexity, 

allocated PC memory the proposed combined solution is much less consuming than the optoelectronic feedback circuits 

commonly used with single-frequency fiber lasers 55, 56. And finally, the new laser design comprises an optical fiber ring 

cavity with the Q-factor that is higher than that used with the self-injection locked fiber lasers earlier. The self-injection 

locking mechanism provides more than a 1000-fold narrowing of the DFB laser linewidth. Active optoelectronic 

feedback based on a simple microcontroller ensures long-term stabilization of the laser operation. We have explored key 

features of the laser operation with and without the active feedback, in particular, demonstrating a control and tuning of 

the laser generation linewidth. The laser stabilization dynamics, linewidth narrowing, and phase noise reduction in the 

new fiber laser configuration are experimentally explored.   

 

 

Figure 1. Schematic illustration of the experimental configuration; CIR – circulator, OI – optical isolator, ATT – 

attenuator, PS – phase shifter, USB-DAQ - microcontroller, PD –photodetector, AMP – control signal amplifier. The 

blue solid line indicates the contour of the thermal and vibration insulation box. 
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2. LASER CONFIGURATION 
 

The experimental laser setup is shown in Fig. 1. It is totally spliced from standard PM fiber telecom components. A 

standard distributed feedback (DFB) laser diode (Mitsubishi FU-68PDF-5) supplied by a -30 dB built-in optical isolator 

emits radiation with a maximal power of ~15 mW at ~1552 nm in linear polarization. The light emitted by the laser 

passes an optical circulator and is introduced into a high-Q ring resonator. The high-Q ring resonator is spliced from a 

single coupler (99/1) and comprises ~11m length of standard PM fiber (Nufern PM1550-XP). In order to implement the 

injection locking mechanism the laser radiation passed the ring resonator returns back into the DFB laser cavity thus 

providing passive feedback to the laser operation. The fiber feedback loop comprises the optical isolator (OI), 50/50 

coupler, attenuator (ATT) and phase-shifter (PS). The 50/50 coupler redirects a part (50%) of the laser power passing 

through the feedback loop to the photodetector and laser output. The built-in optical isolator eliminates the effects of 

uncontrollable back reflections and simultaneously reduces the value of a feedback power obtained from the external 

fiber optic ring resonator. The portion of the feedback power returned to the DFB laser cavity is controlled by ATT. The 

optical isolator (OI) isolates the DFB laser from undesirable back reflections from the fiber faces. The laser operation is 

monitored by a fast photodetector (PD, Thorlabs DET08CFC, 5 GHz, 800 - 1700 nm). A fiber phase-shifter based on the 

thermo-optical effect (Phoenix Photonics VPS150-15-PM-2-1) is attached to the feedback loop and driven by a low-cost 

USB Multifunction DAQ (based on the Arduino board) connected with a PC. The active feedback circuit helps the laser 

to maintain the desired laser operation in self-injection locking regime. The fiber configuration is placed into a foam box 

stabilized at ~25 ◦C to protect the laser system from the laboratory environment. A fast photodetector detects the optical 

signal at the laser output. The signal from the photodetector is used as an error signal of the active feedback circuit. The 

active feedback circuit tends to keep the feedback signal at the desired level applying an appropriate voltage to the fiber 

phase-shifter. Additional thermal control (also based on the Arduino board) is applied to the laser box as a whole to 

control the voltage applied to the phase-shifter, in particular, to keep it within the dynamic range. A delayed self-

heterodyne technique has been employed to measure the linewidth of radiation emitted by the laser at different 

stabilization regimes. An all-fiber disbalanced Mach–Zehnder interferometer with a 50 km delay fiber and 80 MHz phase 

modulator supplied by polarization controller is used for this purpose57. The beat signal from the interferometer is 

detected by a ~5 GHz photodiode and RF spectrum analyzer. 

 
Figure 2. Typical oscilloscopic traces of the free-running DFB laser (blue curve), stabilized self-injection locked laser 

(red curve) and control signal (black curve). 
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2. EXPERIMENTAL RESULTS: LASER POWER BEHAVIOUR 

  

When the passive feedback loop is open, the laser operates in a free-running regime. Figure 2 (blue curve) shows a 

typical oscilloscope trace recorded with the free-running laser power passed through the high-Q fiber ring cavity. One 

can see the recorded trace exhibits a lot of peaks caused by extended DFB laser frequency variations. The closed 

feedback loop forces the laser to operate in the self-injection locking regime resulting in suppression of the intensity 

fluctuations. In this case the laser operating frequency is locked to the resonance frequency of the high-Q cavity 

resonance. Slow changes of the ring cavity frequency caused by the environment noise (acoustic and temperature) result 

in synchronous changes of the DFB laser frequency. Any deviations of the DFB laser frequency from the ring cavity 

resonant frequency increases the laser output power recorded by the photodetector. The aim addressed to the active 

feedback circuit is to keep the signal recorded by the photodetector as low as possible affecting the phase delay in the 

optical feedback loop.  

Figure 2 show oscilloscope traces recorded with the stabilized laser output power (red curve) and with control signal 

applied to the phase-shifter (black curve). For the laser operating without electronic feedback the laser frequency is not 

locked to the ring resonance. The electronic feedback circuit is trying to maintain the laser power detected at the detector 

(it is used as an error signal for the active circuit) fixed to its minimal value. One can see that the DFB laser frequency is 

always locked to the ring cavity resonance providing a stable laser operation recorded by the photodetector (red curve). 

The self-injection locking mechanism in combination with optoelectronic feedback (see, black curve) perfectly works 

against the environment noise. Sometimes, the stabilized laser behavior could be interrupted by a short mode-hopping 

event provoked by the environment noise. A typical time of the system recovery provided by active electronic feedback 

is ~ 0.2L s .  

Another source of the laser instabilities is an extended drift of environment temperature. The environmental 

temperature variations affect both the ring cavity and feedback loop fiber lengths moving the mutual position of the 

resonant ring cavity and feedback loop frequencies. The electronic feedback circuit works against the temperature noise 

trying to maintain their equality. To this end, it controls the phase delay in the optical feedback loop smoothly changing 

the voltage applied to the phase-shifter. The dynamical range of the phase-shifter is limited by 75 rad . When this limit 

is exhausted, the phase must be reset by an integer number of circles. Such jumps of the control signal destabilize the 

laser for a short time. A typical time of the stabilized laser operation in the laboratory environment (between two jumps 

of the control signal) is ~30 min. To avoid this instability an additional thermal control is applied to the laser box as a 

whole. It used to keep the feedback circuit within its dynamic range ensuring long-term laser operation stability. 

3. EXPERIMENTAL RESULTS: OPTICAL SPECTRA 

The spectral performance of the laser operation is demonstrated in Fig. 3. It compares the self-heterodyne optical 

spectra 57-62 recorded with the laser configuration with the free-running DFB laser (open optical feedback loop) and with 

the DFB laser stabilized by optical and electronic circuits. The experimental spectra shown in Fig. 3 are averaged over 

10 realizations each. The spectra are centered around ~80 MHz. One can see that the stabilization of self-injection 

locking causes 1000-fold narrowing of the laser spectrum. The narrower spectrum of the stabilized laser exhibits 

oscillations in the wings evidencing that the laser coherence length is much longer than the interferometer delay fiber 58. 

To proceed the measured data, we use the method based on the decomposition of the self-heterodyne spectra into 

Gaussian and Lorentzian contributions 59, 61. In this approach, the laser’s line is thought to be Gaussian in the range near 

the top, and Lorentzian in the wings. Long delay fiber results in considerable broadening of the self-heterodyne spectrum 

due to the 1/f frequency noise. The convolution with the acquired 1/f noise causes overestimation of the natural laser 

linewidth, if it is estimated from the 3-dB width of self-heterodyne spectrum as commonly used 57. Since, the 1/f noise 

contributes Gaussian broadening mostly pronounced near the top of the laser spectrum, the estimation by the 20-dB 

width of self-heterodyne spectrum is closer to the natural laser linewidth, however, the result is still overestimating 59. 

The measured self-heterodyne spectrum is actually the Voigt profile, i.e., the convolution of the Lorentzian and Gaussian 

spectra. The Lorentzian and Gaussian contributions can be evaluated by fitting the measured self-heterodyne spectrum 

by the Voigt profile. Figure 3 shows the fitting Voigt profiles obtained using the algorithm described in Ref. 61. One can 

see that the fitting is applied just to the highest points in the wings ensuring upper values of the Lorentzian laser 

linewidths estimated for two laser outputs. The Lorentzian laser linewidth 
Lw  is a half of the Lorentzian width 

(FWHM) 
Lw  of self-heterodyne spectrum and the Gaussian component 

Gw  is 2 2 times the Gaussian linewidth 
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(FWHM) 
Gw  of self-heterodyne spectrum 59. Therefore, the Gaussian laser linewidths are found to be narrower than 1.3 

MHz and 3.8 kHz for the free and stabilized laser, respectively. And the natural Lorentzian laser linewidths are found to 

be narrower than 430 kHz and 310 Hz for the free and stabilized laser, respectively. 

 

 

 
Figure 3. Delayed self-heterodyne spectra of the free-running DFB laser (a) and the laser operating in the self-

injection locking mode (b). The measured spectra (black) and their fitting Voigt profiles (red) with the Gaussian and 

Lorentzian linewidths (FWHM) used as the fitting. 
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Figure 4. Dependence of the laser linewidth in the self-injection locking mode on the magnitude of the feedback 

signal shows the ability to control the laser linewidth 

4. LASER LINEWIDTH TUNING 

 

With built-up feedback loop self-injection-locking regime is established and followed by a drastic (~1000 times) 

reduction of the Lorentzian laser linewidth down to sub-kHz scale. The minimal laser Lorentzian linewidth recorded in 

the experiment is ∼ 310 Hz. In self-injection locking regime with passive feedback only the laser linewidth maintains its 

minimal value during 10–100 minutes (depending on environment noise level). The rest time it slowly walks within the 

range of 3.1 – 3 kHz until mode-hopping event occurs. The efficiency of laser linewidth narrowing could be monitored 

by detecting the laser power monitored by the photodetector. With the laser operating in free-lasing regime the laser 

power gets the maximal value. For the laser operating in self-injection-locking regime the power BP  is lower. When the 

generated laser frequency coincides with one of the ring cavity resonance peaks both the laser linewidth and laser power 

are minimal. Any detuning of the laser frequency from the cavity resonant peak frequency increases the laser linewidth 

and decreases the laser power. Therefore, both detuning of the laser frequency from the cavity resonant frequency and 

laser linewidth could be monitored by the photodetector. When the optoelectronic feedback circuit maintains the laser 

power fixed to some set value, it keeps the laser linewidth as well fixed. Figure 4 show the measured laser Gaussian and 

Lorentzian linewidths as functions of the laser power expressed in arbitrary units. So, the applied active feedback circuit 

could play in the laser configuration a second role granting control and tunability to the laser linewidth. 

5. CONCLUSION 

 

In conclusion, we have implemented an active feedback loop based on a low-cost USB-DAQ to the configuration of 

DFB laser self-injection-locked to an external all-fiber ring resonator extending the frequency deviation range available 

for self-stabilization. Specifically, the laser configuration is fully spliced from the polarization maintaining (PM) single-

mode optical fiber that exhibits significantly improved stability against the environment noise. The reported results 

enhance our understanding of the self-injection-locking mechanism in semiconductor lasers and open up new 

possibilities for manipulating and controlling their properties. Particularly, new ability to control and tune the laser 

linewidth is attractive for many laser applications, including high-resolution spectroscopy, phase coherent optical 

communications, microwave photonics, coherent optical spectrum analyzer, distributed fiber optics sensing, in 

particular, phase-OTDR acoustic sensing 63-71. 
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