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Abstract.  It is shown that when counterpropagating laser beams 
are incident on an array of parallel single-walled carbon nanotubes, 
strong interaction of waves is possible, accompanied by the amplifi-
cation of one of the waves at the expense of another, more intense 
pump wave. The interaction is most efficient when the condition of 
phase matching of the incident waves and the slow plasmon polari-
ton wave formed because of the laser-induced metallisation of nano-
tubes is satisfied. The dependence of the the signal wave gain on the 
geometric parameters of the array and the wave characteristics of 
the incident waves is studied numerically. A range of phase detun-
ing values is found, in which the gain changes weakly near its maxi-
mum value.

Keywords: single-walled carbon nanotubes, surface plasmon polari-
tons, coupled waves, interwave interactions, phase matching.

1. Introduction 

Arrays of ordered carbon nanotubes (CNTs) and nanocom-
posites based on them are being intensively studied as promis-
ing objects for solving various problems related to the genera-
tion and control of electromagnetic radiation in various fre-
quency ranges, from optical to microwave [1 – 9]. Technologies 
have been developed for producing arrays with controlled 
parameters, consisting of both multi-walled (MWCNT) [3 – 5] 
and single-walled (SWCNT) [6, 8, 9] tubes. CNT arrays are 
used to develop radiation absorbers [3, 10], thermal emitters 
[8, 11], signal processing devices [4, 9], terahertz and IR 
emitters [12, 13], etc. A number of applications is possible 
because a CNT can act as a transmission line (waveguide) 
supporting the propagation of an infraslow (with an effec-
tive refractive index of more than 100) surface electromag-
netic waves [14 – 21]. 

As shown in Refs [4, 22], to describe arrays of parallel 
CNTs, a wire medium model can be used, which is a two-
dimensional lattice of parallel thin conducting rods (wires), 

well studied in connection with numerous applications in 
microwave technology [23 – 25]. This material can be consid-
ered as a uniaxial electron plasma in which free electrons can 
move only along the wires. The frequency dependence of the 
effective dielectric constant of such a medium is determined 
based on the Drude model for metals: 
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where w is the cyclic frequency, and n is a coefficient charac-
terising optical losses. The effective plasma frequency wp for a 
square lattice is defined as [23] 
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where d is the lattice period, and a is the radius of the wire 
(nanotube). 

According to Eqn (2), the effective plasma frequency 
depends only on the radius of the wires and the lattice period, 
which makes it possible to produce CNT arrays with the 
required wp value. However, at first glance, this result does 
not agree with the well-known formula 
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which includes the concentration n of charge carriers, the 
electron mass me, and charge e (e0 is the electric constant). 
This means that in Eqn (3) the effective concentration of 
electrons and the effective mass of an electron should be 
used [22, 23]. The effect of inductance is interpreted as an 
increase in the effective electron mass, because of which the 
value of the plasma frequency shifts from the near UV region 
for bulk metals to the IR and terahertz regions for wire media 
and CNT arrays. 

In our paper [26] we considered the mechanism of genera-
tion of slow surface plasmon polaritons (PPs) in the terahertz 
and far-IR ranges caused by laser irradiation of ordered 
arrays of SWCNTs. Under the condition of longitudinal reso-
nance, each tube of the array with a slowed-down plasmon 
wave propagating in it is a dipole antenna emitting at the PP 
frequency. It is shown that by changing the angle of the laser 
beam incidence on the structure under study, it is possible to 
achieve matching of the length of the nanotubes in the array 
with the wavelength of laser sources, thereby providing opti-
mal conditions for converting cw laser radiation into tera-
hertz radiation. Two schemes for the implementation of this 
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process are proposed. In the first case, self-decay (similar to 
parametric three-photon interaction in a periodic structure) 
of the initial laser wave into a diffracted wave and PP on the 
surface of nanotubes is considered. Slow PPs are excited in 
the array by the interaction of narrow-band laser radiation 
of the incident and diffracted waves with periodically located 
CNTs. In the second case, two laser sources with slightly 
different radiation frequencies are used to excite PPs in 
CNTs, while the generation of a slow PP is carried out at a 
difference frequency. The second scheme is more compli-
cated technically, but it does not require a strict periodicity 
of the array of parallel CNTs. In both cases, the phase 
matching conditions of the corresponding wave processes 
must be satisfied. 

In this paper, based on the two-beam scheme proposed in 
Ref. [26], we consider a model of the parametric interaction of 
input waves, a more intense pump wave at frequency w1 and 
a signal wave at frequency w2. The interaction incorporates 
the generation of an idler wave (in our case, an infraslow PP) 
at the difference frequency W = w1 – w2. In the simplest geom-
etry of interaction with oppositely directed wave vectors, the 
phase matching condition has the form: 

k1(w1) + k2(w2) = q (W ),	 (4) 

where k1, 2 are the propagation constants of counterpropagat-
ing collinear interacting waves, and q is the propagation con-
stant of PPs excited in nanotubes. The condition can be met, 
e.g., by selecting appropriate values of the frequencies w1 or 
w2. When condition (4) is fulfilled, amplification of the signal 
and idler waves will be most efficient. In this case, the coeffi-
cient of reflection from the structure will be close to unity at 
the expense of the amplified signal wave that passes through 
the array; however, the reflected radiation will have a fre-
quency w2 that is different from the frequency w1 of the inci-
dent radiation. 

Below we consider the situation when a high-frequency 
pump wave has a wavelength of ~1 mm, at which the most 
widespread and available fibre and solid-state laser sources 
with high average and peak powers operate. The dependence 
of the energy gain of the signal wave on the geometric param-
eters of the CNT array, as well as on the amplitude and fre-
quency of the signal wave is investigated. 

2. Statement of the problem and basic relations 

We consider a two-dimensional periodic array of parallel 
SWCNTs of the same length L, forming a square lattice with 
a period d. The tubes are assumed to be long enough to satisfy 
the condition d <<   L. The array is irradiated by two counter-
propagating laser beams with frequencies w1 and w2, propa-
gating along the axes of CNTs (z axis). 

It is known that a metallic CNT can serve as a transmis-
sion line (waveguide) that ensures the propagation of a highly 
slowed surface electromagnetic wave [14 – 16, 19, 21]. If the 
nanotubes of the array are initially dielectric or semiconduct-
ing, then when illuminated by laser radiation, they are metal-
lised. 

Let us assume that laser radiation in the CNT array is 
mainly spent (lost) for the generation of PPs, which is the 
result of nanotube metallisation, i.e. the generation of each 
nonequilibrium carrier leads to the formation of a PP. Using 
the model of metallisation of the semiconductor surface, con-

sidered, e.g., in Ref. [27], we write an equation for the genera-
tion of nonequilibrium charges in CNTs (or, which is the 
same in our case, for the generation of PPs): 
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where n is the volume concentration of nonequilibrium 
charges in one CNT; t ~ 1/ug(W ) a3(W ) is the lifetime of the 
corresponding PPs; ug (W ) is the group velocity of the PP; 
a1(w1), a2(w2), a3(W ) are the decrements of radiation damp-
ing in CNTs at the corresponding frequency; w1 and I1 are the 
frequency and intensity of the pump wave metallising the 
CNT array; and w2 and I2 are the parameters of the initially 
low-power wave amplified by the pump wave. Below, for a 
rough estimate, we assume that a1(w1) » a2(w2). 

The concentration of nonequilibrium carriers (in our case, 
PPs) generated in the field of laser radiation with intensity I1 
is determined from Eqn (5) under the condition dn/dt = 0, 
I2 = 0: 
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Expression (6) allows obtaining the critical value Icr of the 
laser radiation intensity at which the CNT is completely met-
allised. To this end, the condition n ® n0 (n0 is the charge con-
centration in the CNT) is used, which means that all electrons 
from the electrically neutral zone are ‘transferred’ to a non-
equilibrium state with the formation of a surface PP. This is 
similar to what happens in semiconductors, when all valence 
electrons are ‘transferred’ to the state of nonequilibrium car-
riers. From Eqn (6), it follows that the intensity of the critical 
field is determined by the relation 
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For graphene at the point of electric neutrality, the sur-
face concentration of carriers is ns = 2an0 ~ 108 cm–2 [28]. This 
allows estimating the conditions for the realisation of com-
plete metallisation according to Eqn (7) as Icr ~ 104 W cm–2 
for the optical range and Icr ~ 103 W cm–2 for the region near 
10.6 mm (the wavelength of CO2 lasers). The use of arrays 
with dense filling will make it possible to use cw narrow-band 
(highly coherent) laser sources with radiation intensities I1 
about 1 W cm–2. 

For two counterpropagating laser beams, it is possible to 
generate surface PPs at the difference frequency W = w1 – w2 
with a propagation constant q(W ), propagating along the 
nanotubes. Under the assumption of complete metallisation, 
the dynamic component of the dielectric constant of the array 
[determined by expression (1)] turns out to be harmonically 
modulated with the frequency W :
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where for SWCNTs the attenuation coefficient is n ~ 1012 s–1. 
Thus, a nonstationary photonic crystal is formed, providing 
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(under certain conditions) the interaction of two counter-
propagating waves. 

If |De | < 1 in Eqn (8), the standard theory of coupled 
waves in one-dimensional periodic media [29, 30] is applicable 
to describe the interaction of counterpropagating waves. For 
w1 > w2, the interaction occurs due to the presence of a PP 
propagating along the CNTs in the positive direction of the z 
axis. In this case, for the complex amplitudes of the pump 
wave A1 and the signal wave A2, the following system of equa-
tions is obtained: 

( )exp
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where k1 = k1
2|De|(w1)/(4k2) and k2 = k2

2|De|(w2)/(4k1) are the 
coupling coefficients; k1, 2 are the propagation constants of 
the counterpropagating waves (we assume that the CNTs of 
the array are placed in a vacuum); and d = k1 + k2 – q is the 
phase matching detuning. 

The solution of Eqns (9) shows that the result of energy 
exchange between coupled waves can be an increase in the 
amplitude A2 of the signal wave at the expense of the high-
frequency pump wave with a frequency w1, i.e., parametric 
frequency conversion takes place. The efficiency of this pro-
cess is characterised by the gain G of the signal wave inten-
sity:
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The system of linear equations (9) has the analytical solu-
tion [30]: 

A1(z) =  [C1exp(– gz) + C2 exp( gz)] exp(– idz/2),	
(11)

A2(z) =  [ b1C1exp(– gz) + b2 C2 exp( gz)] exp( idz/2),

where g = (k1 k2 – d2/4)1/2; b1 = i k1/(g – d/2); and b2 = k1/(b1 k2). 
Arbitrary constants C1, 2 in Eqns (11) are found from the 
boundary conditions A1(0) = A10 and A2(L) = A20, specified 
by the amplitudes of incident waves at the array input: 

C1 = – x [ b2 A10 exp(gL) – A20 exp(– idL/2)],	
(12)

C2 = x [ b1 A10 exp(– gL) – A20 exp(– idL/2)],

where x =  [ b1 exp(– gL) –  b2 exp(gL)] –1. Below, the ampli-
tudes A1, 2 are expressed in relative units: the amplitude A10 
of the pump wave at the array input (plane z = 0) is assumed 
to be equal to unity, and its initial phase is taken to be zero. 
The input signal wave amplitude in the z = L plane is A20 = 
hA10. 

For a numerical analysis of solution (11), it is necessary to 
know a dispersion relation, i.e., the dependence q(W ) for the 
propagation constant of a PP propagating along the tubes. 
The existing approaches to solving the electrodynamic prob-
lem of the surface wave propagation in a waveguide formed 
by CNTs [15 – 17, 31 – 33] are different, but the resulting dis-
persion dependences q(W ) are in good agreement with each 
other. Within the framework of the hydrodynamic approach 
[16, 17, 31] SWCNTs are modelled by an infinitely long and 

infinitely thin cylindrical shell of radius a, whose valence elec-
trons are considered as an electron gas uniformly distributed 
along a cylindrical surface with a surface density ns. A uni-
formly distributed electron gas interacts with the electromag-
netic wave and can be considered as a charged continuous 
medium. As the solution obtained within this approximation 
shows, both pure TE and TM waves and hybrid modes can 
propagate in CNTs. 

In the present work, we use the dispersion relation  q(W )
for a surface TM wave in a metallic SWCNT given in Ref. [17]: 

iW e0 = szz q2 aI(qa)K(qa),	 (13) 

where I(qa) and K(qa) are modified Bessel functions of the 
first and second kinds. The longitudinal component of the 
conductivity tensor of a metallic SWCNT is expressed as
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where /q q m am
2 2 2 2= + ; m is the guided mode number; c =  

/n ms e
2 2'p  is the square of the wave propagation velocity in a 

homogeneous electronic continuous medium; and n is the 
coefficient of attenuation of the electron wave, caused by the 
scattering of electrons by positively charged ions. Since in 
SWCNTs the ballistic regime is realised for the motion of 
electrons, their scattering by positively charged ions can be 
ignored. For the ratio ns /me in Eqn (14), the following esti-
mate was obtained in [34]: ns /me = 2VF /( )a2'p , where the 
Fermi velocity VF for metallic SWCNTs is estimated at 
~106 m s–1. 

The dispersion dependences q(W ) obtained from Eqn (13) 
for tubes of different radii are shown in Fig. 1. It can be seen 
that the propagation constant of PPs in CNTs is ~107 m–1, 
which makes it possible to satisfy the phase matching condi-
tion (4), since for the considered wavelength l1 = 1 mm the 
wavenumber in vacuum is k1 = 6.28 ´ 106 m–1. In further cal-
culations, the dependence q(W ) calculated for SWCNTs with 
a radius of 1.5 nm is used. 

3. Results of numerical analysis 

This section analyses the results of calculations of the gain G 
for the signal wave based on relations (10) – (12). In the calcu-
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Figure 1.  Frequency dependences of the PP propagation constant in 
metallic SWCNTs with radii a = ( 1 ) 0.5, ( 2 ) 1.5, and ( 3 ) 2.5 nm.
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lations, the parameters of the SWCNT array, namely, the 
length L and the effective plasma frequency wp could be var-
ied, as well as the frequency w2 and the input amplitude A20 
of the signal wave. Variation of w2 (at a fixed frequency w1) 
leads to a change in the value of the detuning d from phase 
matching. 

It follows from Fig. 2 that the gain G substantially depends 
on the effective plasma frequency wp of the SWCNT array. It 
can be expected that amplification of the signal wave will be 
most efficient when the phase matching condition (4) is ful-
filled as accurately as possible, i.e., at d ® 0. The depen-
dences in Fig. 2a are plotted for l2 = 1.032 mm, which cor-
responds to a small parameter of phase-matching detuning, 
d/k1 = 0.01. It can be seen that in the case of a sufficiently 
long interaction length L, exceeding ~5 mm, as the parame-
ter wp increases, the gain gradually saturates, reaching its 
maximum value. The plasma frequency value corresponding 
to reaching ‘saturation’ depends on the length of the tubes in 
the array, but this dependence becomes weaker if the length 
L exceeds ~10 mm. 

Since the phase matching condition is almost never exactly 
satisfied, it is of interest to study the dependence of the gain G 
on the parameter d. Curves ( 1 – 5 ) in Fig. 2b are plotted at a 
fixed L = 8 mm for l2 = 1.028, 1.030, 1.031, 1.032, and 
1.034 mm. They correspond to the relative detunings d/k1 = 
– 0.3, – 0.1, – 0.06, 0.01, and 0.15. It can be seen that as the 

absolute value of the detuning decreases, the saturation 
region expands significantly. At the same time, for large devi-
ations from the phase matching regime, saturation may be 
absent [curve ( 1 )]. 

As follows from the dependences shown in Fig. 2, to 
achieve the maximum effect, the array must have a suffi-
ciently large effective plasma frequency fp = wp /2p, no less 
than 100 THz. For arrays of parallel MWCNTs, the values of 
~200 THz were confirmed experimentally [4], and the results 
of this experiment fully agree with the calculations of the 
plasma frequency by formula (2) for a wire metamaterial. It 
can be assumed that for arrays formed by SWCNTs, for-
mula (2) should be fulfilled even more accurately due to a 
significantly smaller radius of the tubes. Figure 3 shows the 
results of calculating the effective plasma frequency by Eqn 
(2) for arrays formed by SWCNTs of different radii. It can 
be seen that the required values fp » 100 – 200 THz are 
achieved for sufficiently rarefied arrays with a lattice period 
of more than 200 nm. For further calculations, we chose fp = 
150 THz. 

The calculations for Fig. 3 were performed under the 
assumption of complete metallisation of the array nanotubes, 
i.e., I1 > Icr Since, according to (3), the plasma frequency 
depends on the concentration of nonequilibrium carriers, for 
I1 £ Icr one can write

wp
* » /n n p0 w  » /I Icr p1 w   for I1 £ Icr.	 (15) 

Thus, the above fp values can also be achieved for intensities 
insufficient for complete metallisation by increasing the con-
centration of nanotubes in the array. 

Dependences (11) of the amplitudes of counterpropagat-
ing waves within the array, as well as the gain (10), are com-
posite functions of the phase detuning parameter d. The 
dependences of the gain G on the normalised value d/k1 shown 
in Fig. 4 are asymmetric with respect to the d = 0 axis and 
near this value have a region of the highest G, the width of 
which depends on the length of the tubes of the array. When 
d sufficiently differs from zero, the dependence G (d) becomes 
oscillating. At small L [Fig. 4a, curves ( 1 ) and ( 2 )], the cen-
tral part of the dependence G (d) has a clearly pronounced 
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Figure 2.  Dependences of the gain on the effective plasma frequency of 
the SWCNT array (a) at d = 0.01 and L = ( 1 ) 2, ( 2 ) 5, ( 3 ) 10, ( 4 ) 
15 mm, as well as (b) at L = 8 mm and d/k1 = ( 1 ) – 0.3, ( 2 ) – 0.1, ( 3 ) 
– 0.06, ( 4 ) 0.01, ( 5 ) 0.15. The relative amplitude of the signal wave is 
h = 0.2.
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Figure 3.  Effective plasma frequency of the SWCNT array as a func-
tion of the structure period d for CNTs with radii a = ( 1 ) 0.5, ( 2 ) 1.5, 
and ( 3 ) 2.5 nm.



613Interwave interaction in an array of carbon nanotubes with a dynamic plasmon lattice

maximum, shifted towards negative d values. With increasing 
L, the width of the central region decreases, and the height of 
the gain peak increases. At L > 5 mm, the central peak gradu-
ally transforms into a plateau, the width and height of which 
for long CNTs weakly depend on L [Fig. 4a, curve ( 3 )]. For 
arrays with L > 10 mm, hitting the plateau region is ensured if 
d/k1 does not exceed ~0.15 in absolute value. The corre-
sponding range of l2 values is ~5 nm (approximately from 
1.029 to 1.034 mm). 

The curves in Fig. 4b correspond to different values of h 
(i.e., the input signal wave amplitude A20) at a fixed L = 
8 mm. Under optimal conditions (close to the phase match-
ing regime at a sufficiently long interaction length L), the 
amplitude A2 (regardless of its input value A20) grows to a 
value of ~A10, taken as unity. Therefore, the maximum 
value of the gain G can be estimated as (1/h)2. At h = 1.0 
[curve ( 3 )], the gain G » 1 and weakly depends on the 
parameter d; with a further increase in the ratio h, the value 
of G becomes less than unity, which means a transition to 
the inverse process of amplifying the wave with the fre-
quency w1 at the expense of the energy carried by the wave 
with the frequency w2. 

4. Conclusions 

We have shown that when two counterpropagating laser 
beams are incident on an array of parallel SWCNTs, one of 
the incident waves can be efficiently amplified due to the 
interaction with the counterpropagating wave of higher inten-
sity and frequency. The gain depends on the geometric param-
eters of the structure (the length and radius of nanotubes, as 
well as the lattice period), amplitudes and frequencies of 

waves. The frequencies of the interacting waves should differ 
by a small amount to ensure the most accurate fulfillment of 
the phase matching condition. In this case, of interest is the 
possibility of efficient reflection (with appropriate frequency 
conversion) of laser radiation in the near-IR range ( l » 1 mm) 
from a rarefied CNT array (with a period of more than 
200 nm). 

Reducing the length of the nanotubes that form the array 
makes it possible to expand the range of amplified frequen-
cies, but the gain is somewhat reduced in this case. The maxi-
mum achievable gain is approximately equal to the square of 
the ratio of the pump and signal input amplitudes. 

In conclusion, we note that for w1 < wp, the array under 
consideration operates as a metal mirror reflecting radiation 
at a layer thickness  L » lp = 2pc/wp, which is 1 mm or less. In 
this case, when the phase matching conditions are met, the 
irradiated array behaves in accordance with the results we 
obtained earlier in Ref. [26]. 
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