И.О. ЗОЛОТОВСКИЙ, В.А. ЛАПИН, Д.И. СЕМЕНЦОВ

Ульяновский государственный университет

УСИЛЕНИЕ И КОМПРЕССИЯ ЧАСТОТНО-МОДУЛИРОВАННЫХ ИМПУЛЬСОВ В АКТИВНОМ НЕОДНОРОДНОМ СВЕТОВОДЕ

Исследуется динамика распространения частотно-модулированного импульса, распространяющегося в активном световоде с профилем зависимости дисперсии специально подобранным для обеспечения максимальных степеней сжатия.

I.O. ZOLOTOVSKII, V.A. LAPIN, D.I. SEMENTSOV Ulyanovsk State University

AMPLIFICATION AND COMPRESSION OF FREQUENCY MODULATED PULSES IN AN ACTIVE INHOMOGENEOUS FIBER

The dynamics of propagation of a frequency-modulated pulse propagating in an active fiber with a dispersion profile specially selected to ensure maximum compression ratios is investigated.

В работе рассматривается методика усиления и временной компрессии частотно-модулированных импульсов в активном световоде с профилем зависимости дисперсии от длины подобранным таким образом, что бы обеспечивать максимальные степени сжатия импульсов с заданным начальным чирпом при заданном усилении световода.

Динамика временной огибающей ВП описывается уравнением для амплитуды огибающей вида НУШ [1, 2]:

$$\frac{\partial A}{\partial z} - i \frac{d_2(z)}{2} \frac{\partial^2 A}{\partial \tau^2} + iR|A|^2 A = gA, \qquad (1)$$

где $\tau = t - z/v_g$ — время в бегущей системе координат, $d_2 = \left(d^2 \beta/d\omega^2\right)$ — параметр дисперсии групповых скоростей (ДГС), R — параметр нелинейности, g — коэффициент усиления (потерь) в волокне.

При этом в работе выбиралась зависимость дисперсии вида:

$$d_{2}(z) = -|d_{20}| \exp\left[-\frac{\alpha_{0}|d_{20}|}{g_{0}}(\exp(2g_{0}z) - 1) + 2g_{0}z\right].$$
 (2)

На рис. 1a приведены динамика ДГС и пиковой мощности, на рис. 1b профили импульса на входе, в точке максимума модуля дисперсии и на выходе из световода длиной $L=1.5z_0$, где z_0 — точка максимума модуля дисперсии. В работе рассматривался частотно-модулированный импульс вида:

$$A(0,\tau) = \sqrt{P_0} \operatorname{sech}(\tau/\tau_0) \exp(i\alpha_0 \tau^2). \tag{3}$$

Приведённые зависимости получены путём численного решения уравнения (1) методом SSF [1]. При следующих значениях параметров импульса: начальная длительность $\tau_0=10^{-11}$ с, мощность $P_0=0.01$ Вт, чирп $\alpha_0=10^{24}$ с⁻²; и световода: ДГС $d_2=-10^{-27}$ с²/м, параметр нелинейности $R=10^{-3}$ (Вт·м)⁻¹, усиления: $g_0=0.1$ м⁻¹.

Видно, как по мере распространения импульса по участку волокна с возрастающей по модулю дисперсией и постоянным усилением наблюдается его незначительное временное сжатие, при, значительном (более чем в 100 раз) усилении. Затем на участке с убывающей по модулю ДГС происходит резкое сжатие импульса. При выбранных параметрах достигается увеличение пиковой мощности более чем на пять порядков.

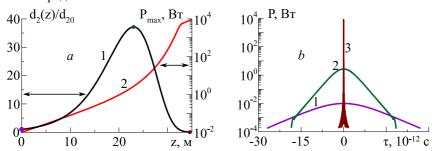


Рис. 1. Динамика ДГС (I), пиковой мощности (2) (a) и профили импульса на входе (I), в точке максимума модуля дисперсии (2), на выходе из световода (3) (b)

Работа выполнена при поддержке РФФИ в рамках научного проекта № 19-42-730013 и Минобрнауки РФ (проект 075-15-2021-581).

Список литературы

- 1. Золотовский И.О., Лапин В.А., Семенцов Д.И., Столяров Д.А. // Оптика и спектроскопия. 2017. Т. 122. № 3. С. 490-497.
- 2. Zolotovskii I.O., Lapin V.A., Sementsov D.I., Fotiadi A.A., Popov S.V. // Optics Communications. 2018. V. 426. P. 333-340.