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Abstract: We have demonstrated a simple all-fiber thulium (Tm) laser Q-switched by stimulated
Brillouin scattering (SBS). The maximum output pulse energy was 80 µJ. This allowed us to generate
a broadband spectrum directly at the laser outputs. For the first time, we measured the fine structure
of the output pulses with a resolution of less than 100 ps. It was found that the SBS Q-switched laser
is capable of generating bunches of picosecond pulses. The effect of modulation instability on the
pulse decay is discussed. The potential application of the investigated laser radiation for producing
destructive effects on soft biological tissues has been demonstrated.

Keywords: thulium; thulium fiber laser; Q-switch; stimulated Brillouin scattering; bunches of pulses;
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1. Introduction

In recent decades, there has been an interest in laser sources that generate radiation
in the 2 µm spectral range. Great progress has been made in the field of solid-state lasers
based on Tm–YAG and Ho–YAG crystals doped with thulium and holmium ions, respec-
tively [1,2]. These high-power, high-energy lasers are actively marketed and commercially
available. However, due to advances in laser technology, fiber lasers have several ad-
vantages over solid-state lasers. These include compact all-fiber and robust design, high
beam quality, and the ability to achieve different operating modes in a wide range of
wavelengths [3].

All-fiber lasers of the 2 µm spectral range are in great demand for medical applica-
tions [4–6], polymer material processing [7], advanced data transmission systems [8,9], and
atmospheric sensing systems [10,11]. Pulsed lasers operating in the 1.9–2 µm spectral range
can also be used as pump sources for Cr2+:ZnSe active elements. [12]. The existence of a
wide application range has led to a variety of laser system configurations. They are mostly
based on the principle of a master oscillator and amplifier system, where the pulses are
shaped by active modulation [13–15]. This, on the one hand, allows flexible control of the
output radiation characteristics (duration, peak power, and energy), but on the other hand,
increases the complexity of the setup and introduces restrictions on the minimum pulse
duration value. Thus, the development of simple pulsed laser systems with passive modu-
lation, emitting in the 2 µm spectral range, is an actual task. One of the most promising
rare earth elements for active media doping in this spectral region is thulium (Tm3+).
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Typically, a pulse operation regime can be achieved in a few ways—mode-locking,
Q-switching, and gain-switching. In the first mode, pulses from several hundred femtosec-
onds [16] to nanoseconds [17] have been demonstrated. To achieve this generation mode,
one must use saturable absorbers [18], artificial modulators [17], or active modulators [19].
In the case of Tm-doped fibers, some scientific groups have successfully demonstrated
the self-pulsing (SP) phenomenon (due to active-ion quenching) [20–22]. These schemes
are quite simple and robust. However, in the case of mode-locking, the pulse repetition
rate, pulse duration, and energy are fixed as usual. To change the listed parameters, some
additional elements (pulse peakers, amplifiers) should be placed into the laser system.

Gain-switching is another attractive way to achieve pulse on demand. In this case,
pulses from tens of nanoseconds to microseconds have been demonstrated at the laser
output. These lasers have a simple scheme. Usually it consists of an active medium and
a pair of mirrors. The key element of this system is a pulsed pump source. Modern laser
diode drivers allow high currents (of several amperes) with nanosecond rise and fall times
to be achieved. As a result, in [23], the authors demonstrated pulse widths as short as 10 ns.
More than 1 kW of peak power was obtained from the gain-switched TDFL, with a fiber
core size of 6.3 µm. The authors showed that changing the cavity length from 4.3 to 0.2 m
resulted in a reduction in output pulses from 130 to 10 ns. Overall, to create this type of
pulsed laser, one needs an expensive pump driver (in the case of a laser diode source) or a
modulated pump laser with a power amplifier [24].

The most widely used method for generating high-energy pulses directly from the
laser output is Q-switching. One branch of this method is active modulation of the cavity
Q factor. The researchers use acousto-optic modulators [14,25] or Pockels cells [26] for this
purpose. For example, in [25], the authors experimentally demonstrated the use of the
high-speed optical modulator. As a result, stable Q-switched pulses with the ability to
tune the pulse repetition rate have been demonstrated. The minimum pulse width has
been measured to be ~160 ns at 100 kHz. In another work [26], Coluccelli et al. showed
the Tm:BaY2F8 laser with output pulses of 170 ns duration at a minimum repetition rate
of 5 Hz with an energy of 3.2 mJ. However, active Q-switching also requires complicated
optical elements and control electronics.

Therefore, the simplest way to achieve high-energy laser pulses is passive Q-switching.
To date, passive Q-switching has been implemented in most fiber lasers using various
saturable absorbers, ranging from thin films to fiber absorbers [27–29]. This enables pulse
durations from tens of nanoseconds to several microseconds. The energy of pulses ranges
from 1 to 50 µJ. Pulse repetition rates are controlled by the optical pump power. Obviously,
the major disadvantage of these systems is the sensitivity of real absorbers to radiation
damage. This can lead to both system failure and gradual degradation of parameters
due to increasing unsaturated optical losses in the cavity. One solution is to reduce the
number of elements that could be damaged by laser radiation and utilize the nonlinear
properties of optical fibers. Therefore, the stimulated Brillouin scattering (SBS) effect is used
to realize passive Q-switching in fiber lasers [30–32]. In these works, a ring interferometer is
added to the fiber laser scheme to achieve regular and stable pulsed operation. In [33], the
authors used a Fabry–Perot interferometer in their laser scheme. This operation principle
utilizes cascaded Rayleigh scattering and SBS, which provide dynamic feedback in the fiber
cavity [31]. In [34], the authors proposed to achieve distributed SBS feedback in a piece of
ultrahigh-numerical-aperture fiber without any interferometers. Pulses with durations of
more than 10 ns and energies of up to 50 µJ have been obtained in the aforementioned works.
However, studies of the fine structure of pulsed radiation at the output of such laser systems
have not been presented previously. Additionally, the presented laser configurations can
obtain broadband radiation both at the output of the laser [30] and by using dispersion-
shifted fibers outside the laser cavity [35].

In this work, we present an all-fiber scheme of a thulium (Tm3+) laser operating in the
passive Q-switching mode based on the SBS effect, and demonstrate for the first time the
generation of sub-nanosecond pulse bunches. The effect of modulation instability on pulse



Photonics 2024, 11, 30 3 of 9

decay is discussed. Another unique feature is an ultra-broadband spectrum (over 400 nm)
generated directly at the laser outputs without the use of additional high nonlinearity index
fibers. At the same time, the laser scheme is implemented using only standard optical
components. The potential application of the investigated laser radiation with destructive
effects on soft biological tissues is demonstrated.

2. Experimental Setup

Figure 1 shows the optical scheme of a Tm-doped fiber laser. The active fiber was
pumped by a multimode laser diode (LD) through a pump–signal combiner (COMB). The
central emission wavelength of the laser diode was 793 nm, and the maximum output
power was up to 10 W. A 5 m long double-clad silica-based fiber segment doped with
thulium ions (TmDF) with core-clad diameters of 10 and 127 µm, respectively, was used
as an active laser medium. The absorption in the clad at a wavelength of 790 nm was
4.6 ± 0.5 dB/m. In the laser cavity, we used a highly reflective fiber Bragg grating (HR
FBG) inscribed by femtosecond laser pulses [36]. The reflection peak corresponded to a
wavelength of 1960 nm, and the reflection coefficient was R = 96%. Similar to the work [31],
a ring interferometer was placed in another part of the cavity, opposite the HR FBG. The
interferometer was based on the X-type 90/10 coupler, and 10% of the output was connected
to the free input via an 8 m standard single-mode delay fiber (SMF). Fiber optic connectors
with 8-degree angle polishing (FC/APC) were used for output and control of laser radiation
at outputs 1 and 2.
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Figure 1. Optical scheme of a Tm-doped fiber laser. COMB—pump–signal combiner, LD—laser diode,
TmDF—thulium-doped fiber, HR FBG—highly reflective fiber Bragg grating, SMF—single-mode fiber.

We measured temporal, spectral, and energy parameters of laser radiation from both
laser outputs during the experiments. Spectral measurements were performed with a
0.1 nm resolution optical spectrum analyzer (OSA). The temporal parameters of the pulse
radiation were analyzed using an oscilloscope and a photodetector with a maximum
temporal resolution of 0.1 ns. A pyroelectric energy meter operating in the range of 1 µJ to
10 mJ in the spectral range of 0.15–12 µm was used to measure the pulse energy.

3. Experimental Results and Discussion

The physical processes behind Brillouin Q-switching can be explained in terms of
open cavity modes, taking into account some fundamental nonlinear properties of standard
silica-based fibers. The use of high-quality fiber in the laser cavity ensures a fairly uniform
distribution of refractive index irregularities (i.e., “frozen” Rayleigh reflectors) along the
entire fiber, which acts as a distributed Rayleigh mirror. Using Tm-doped fiber as the
active medium for light amplification provides lasing, which allows gain heterogeneity
due to spectral hole-burning. The appearance of the laser resonance properties can be
considered the result of a nonlinear selection of the most successful open cavity modes.
Physically, this means that among the photons with complex “paths” trapped in the cavity,
some will return to their initial states more often than others. Therefore, when Tm-doped
fiber amplification begins to compensate for fiber loss, these resonant photons reach lasing
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conditions first. This results in the generation of narrowband components in the laser
spectrum [37].

In turn, the generation of narrowband spectral components in the pumped laser cavity
leads to avalanche-like Brillouin instabilities, which often appear as multiple spikes in
the spectral and temporal domain. Brillouin scattering due to interaction with acoustic
phonons provides narrowband Stokes-shifted optical gain. For a monochromatic pump at
1960 nm, the Brillouin gain factor is nearly three orders of magnitude higher than the Raman
gain, providing amplification with a bandwidth of ~20 MHz at a frequency downshift of
~8.7 GHz from the pump frequency. Occasional lasing of a narrowband spectral component
due to residual cavity resonance induces additional Brillouin gain for downshifted modes,
leading to their rapid (exponential) growth [38]. This cascading process transfers power
from high-frequency components to lower-frequency components, providing a higher
growth rate (and higher peak power) for the new frequency components. This continues
until the generation of short pulses by the latest cascades exhausts the accumulated cavity
power. The described pattern is typical for all fiber lasers employing distributed Rayleigh
feedback [30,37,39]. A more detailed theory of the passive Q-switching mode based on the
SBS effect supported by equations has been presented previously, e.g., in [31].

The radiation characteristics were measured from both the interferometer side and the
HR FBG side. We observed several modes of operation during the research: continuous-
wave, transient, and pulsed. A continuous-wave operation mode was observed after
exceeding the generation threshold at a pump power of 2.5 W and up to 2.9 W of pump
power. At the same time, a narrowband spectrum corresponding to the resonance reflection
peak of the FBG at a wavelength of 1960 nm was measured at output 1 (Figure 2a). The
contrast with respect to the amplified spontaneous emission exceeded 20 dB. The average
power detected at output 1 in this mode did not exceed 100 mW.
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Figure 2. (a) Continuous wave radiation spectrum of Tm-doped fiber laser at the output 1; (b) pulse
train at a pump power of 8.5 W; (c) pulse energy dependence on the pump power at outputs 1 (blue)
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When the pump power was increased to higher values (2.9–3 W), irregular transitions
to pulse generation were observed. In this case, it was not possible to accurately detect the
pulse energy and spectra of the output radiation, because the exposure time of the optical
spectrum analyzer exceeded the transient time.

To obtain a stable pulse mode, it was necessary to increase the pump power values
(more than 3 W). As a result, we observed the continuous pulse train at outputs 1 and 2.
The pulse repetition rate increased from 2 to 18 kHz as the pump power increased from
3 to 10 W. Thus, the maximum value of the pulse repetition rate was about 18 kHz and
was limited by the pump power. The amplitude fluctuation did not exceed 20%. Figure 2b
shows an example of a pulse train with a repetition rate of 11 kHz at a pump power of 8.5 W.
Increasing the repetition rate was accompanied by increasing the pulse energy. Figure 2c
shows the dependence of energy on pump power at the outputs 1 and 2. The energy of
pulses measured at output 1 increased from 47 to 80 µJ, while at output 2, lower energy
values were measured from 22 to 50 µJ. From Figure 2c, it is clear that the pulse energy from
output 2 increases linearly. We assume that this is caused by the appearance of additional
pulses. In contrast, the pulse energy at output 1 saturates at the level of 75–80 µJ. Therefore,
we did not observe the appearance of additional pulses, and this may be due to the limited
FBG reflection spectrum. Figure 2d shows the dependence of an average output power on
the pump power at the laser outputs. The maximum average output power was 1.3 and
0.95 W at outputs 1 and 2, respectively.

The obtained energy values resulted in a nonlinear broadening of the emission spectra
up to 450 nm at the level of −20–25 dB directly inside the laser cavity (Figure 3). As
can be seen for both outputs, the long wavelength border is limited by the OSA scan
range. However, we believe that the spectrum strongly decreases after 2450 nm due to
high silica-based fiber losses in this spectral region. Our assumption is confirmed by
several investigations [40–42]. In addition, there were side peaks in the spectra (see inset
of Figure 3a), related to modulation instability (MI). The maximum frequency offset Ωmax
from the main peak was ~1.2 THz. This corresponds to a peak power of about 3–3.5 kW, if
we consider the formula (1) and the cavity fiber data for dispersion (β2 = −82 ps2/km) [43]
and nonlinearity (γ = 0.5 − 1 W−1·km−1).

Ωmax = ±
(

2γPo/|β2|
)1/2

, (1)
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As known, modulation instability leads to the decay of the initiating pulses into shorter
pulses. Thus, the peak power is further increased, which in turn leads to the generation
of broadband radiation with an asymmetric spectrum with an extensive flat region in the
long-wavelength part, as shown in Figure 3. Such spectra are typical for pumping by single
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pulses longer than 1 ps [44] or by pulse bunches [45] into a region of anomalous dispersion
far from zero.

Another confirmation of the pulse decay is the observed fine temporal structure of
the pulses. The oscilloscope traces at the output of the laser operating in the pulsed mode
at a pump power of 10 W are shown in Figure 4a—output 1, and Figure 4b—output 2.
Both oscilloscope traces, using the pulse energy data, show values of instantaneous peak
pulse power that are significantly higher than those estimated for the MI gain spectrum.
However, it is the MI that leads to the formation of bunches of short sub-nanosecond pulses
with increased pulse amplitude. That is, it was possible to see the fine structure of the
high-energy SBS Q-switched laser pulses. One can note that in this case, the laser is capable
of generating bunches of picosecond pulses.
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4. Potential Application

We have performed experiments on exposure to radiation from the studied laser
on water in vitro, and single-spot exposure to collimated pulsed radiation on porcine
longissimus muscle tissue ex vivo, using the updated setup described in [6]. The choice of
this particular biological tissue is determined by its well-known optical properties and high
water content [46]. The presence of one of the main water absorption peaks (λ ≈ 1930 nm)
in the 2 µm spectral region makes sources with wavelengths of 1900–2000 nm promising for
exposure on water-saturated biological tissues [47]. For ex vivo tissue experiments, porcine
longissimus muscle tissue was collected after the animal postmortem and pre-cooled to
4 ◦C. After pre-cooling, the muscle tissue was sliced into small specimens of ≈1–3 mm
thick. The temperature of the specimens was restored to room temperature (22 ◦C) prior
to the experiments, and the surface of specimens was sprayed with saline to prevent the
tissue dehydrating.

Figure 5a shows the schematic of the optical stand for the experiment on non-contact
exposure to collimated pulsed radiation of the Tm-doped fiber laser on biological tissue
specimens. The pulsed radiation from the first output of the Tm-doped fiber laser (1) was
delivered through a single-mode fiber (2) to the optical objective (LOMO). An objective (3)
with 8 × 0.2 NA collimated the laser beam positioned normal to the surface of the muscle
tissue specimens (4). The loss on the optical objective was about 12%. The laser beam
quality was defined by the standard single-mode fiber (core/clad diameter 9/125 µm)
used for the laser radiation output. The diameter of the collimated laser beam with
Gaussian intensity distribution on the specimen surface was estimated to be in the range
of ≈450 µm, depending on the objective adjustment and the variation in the specimen
thickness. Figure 5b presents a photograph of the result of single-spot exposure to the
Tm-doped fiber laser radiation with a pulse repetition rate of 14 kHz, an average power of
1 W, and energy of 72 µJ (taking into account objective losses). The exposure time varied
between 10 and 20 s. We used a Nikon Eclipse Ci-L 28499 microscope (Nikon, Tokyo, Japan)
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at 100× magnification to analyze the specimens’ surface after laser radiation exposure, and
to obtain photographs.
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Figure 5. (a) The schematic of optical stand for the experiment on non-contact exposure to Tm laser
radiation on biological tissue specimens: 1—Tm-doped fiber laser, 2— single-mode fiber for laser
radiation delivery, 3— optical objective, 4—muscle tissue specimen; (b) a magnified image of porcine
muscle tissue after exposure to pulsed laser radiation with a pulse repetition rate of 14 kHz, an
average power of 1, W, and energy of 72 µJ for 20 s.

According to this photo, it can be seen that exposure to such pulsed radiation leads
to the formation of holes in the tissue specimen with a thickness of about 2 mm. The
diameter of the holes does not exceed 600 µm. In addition, the carbonization of biological
tissue is noticeable at the border of the obtained hole. This is due to the high-energy
parameters of laser radiation, which lead to a strong overheating of biological tissue and its
thermal damage [48]. Thus, it can be concluded that radiation of the developed and studied
Tm-doped fiber laser can be used for effective destructive exposure on water-saturated
biological tissues. This type of laser radiation, and consequently the compact scheme of an
all-fiber laser, may be promising for some medical applications.

5. Conclusions

Thus, this paper presents a relatively simple scheme of an all-fiber Tm-doped laser
operating in the Q-switching mode due to the SBS effect. The laser scheme consisted of
standard commercially available fiber optic components. The fine structure of the obtained
pulse radiation with a resolution of 0.1 ns was detected. The supercontinuum spectrum (up
to 450 nm) was obtained directly at the laser outputs without using additional fibers with a
high nonlinearity coefficient. The pulse energies at the laser outputs were in the range of
22 to 80 µJ, which allowed the generation of spectrally broadened radiation directly at the
laser output. For the first time, the presence of a fine subnanosecond structure in the pulse
generation of the SBS laser, obtained due to the effect of modulation instability, has been
demonstrated. We have also demonstrated the possibility of using this type of radiation for
destructive exposure on soft biological tissues.
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