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Abstract—Novel techniques of photonics based on stimulated Brillouin scattering (SBS) in optical
fibers are considered. The main attention is paid to the original schemes of narrow-band low-noise
lasers and their possible applications in distributed fiber sensors.
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INTRODUCTION

Stimulated Brillouin scattering (SBS) [1, 2] in standard fibers is characterized by a uniform gain line
with a width of ∼30 MHz and a large dynamic range in terms of the absolute gain of the resonant signal
power [3–7]. The upper gain limit of ∼1012 corresponds to the generation of SBS from thermal noise at a
typical threshold pump power of ∼10 mW per kilometer of telecommunication fiber. Such low threshold
powers and giant gain make it possible to create SBS devices based on standard semiconductor laser
diodes and fiber cavities. However, in order for a semiconductor laser to generate SBS in a fiber
resonator, its own generation line must be preliminarily narrowed by several orders of magnitude. Simple
and effective techniques for narrowing the generation line of a semiconductor laser make it possible to
create inexpensive narrow-band Brillouin sources that are compact and reliable and have a low phase
noise.

Over the past few years, we have proposed a number of solutions for Brillouin lasers with a Lorentzian
linewidth up to 500 Hz, which are fully welded fiber configurations that combine a laser diode and several
standard telecommunication components. The possibility of simultaneous generation at two strictly
related frequencies makes these solutions attractive for use as a master oscillator in distributed sensors
based on both Rayleigh scattering and Brillouin scattering in optical fibers.

The purpose of this work is to describe the original ideas and individual technical solutions underlying
the developed configurations of narrow-band lasers [8–10] as well as the features of their possible
applications in distributed fiber sensors of acoustic vibrations, temperature, and pressure [11–15].

1. NARROWING OF LASER GENERATION LINE AND ITS STABILIZATION

The narrowing of the linewidth and the stabilization of the generation of a semiconductor laser are
of considerable research interest due to the great demand for compact, inexpensive, and narrow-band
laser sources with high coherence, which are necessary for a large number of applications [16–20].
They are high-resolution spectroscopy, coherent optical communication, distributed optical monitoring,
optical spectrum analysis, and microwave photonics [21–24]. The generation linewidth of standard
semiconductor DFB lasers (distributed feedback lasers) is usually several megahertz [25]. Self-locking
of the laser frequency by external feedback is one of the most promising techniques for narrowing the
laser line. To ensure the effect, part of the optical radiation emitted by a laser is returned to its resonator,
thereby the threshold at the locked frequency gets lower [26]. This relatively simple technique makes it
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Fig. 1. Pattern of frequency lock-on of an external ring resonator by a DFB laser. (a) Schematic diagram of a laser with
an external resonator and (b) mode position required to maintain stable operation of the laser in frequency lock mode.

possible to develop inexpensive narrow-band laser sources based on standard laser diodes, which makes
it more attractive than conventional laser systems based on active feedback. One of the most interesting
laser configurations with frequency lock-on is based on a narrow-band optical filter in a weak feedback
loop [27]. In particular, current studies are associated with the use of microresonators [28–35]. By using
such resonators in the whispering gallery mode, the linewidth of a semiconductor laser can be reduced
to the subkilohertz frequency range in a reliable and compact configuration [36]. The disadvantages
of systems based on microresonators with a huge quality factor (∼1011) are the complexity of tuning,
adjustment, and also the connection of fiber elements and nonfiber elements.

An alternative option is fiber resonator systems, which have a lower quality factor, but are capable
of providing a similar line narrowing. In particular, such solutions are of great interest for generating
the radio frequency spectrum and distributed Brillouin monitoring, in which the fiber resonator can
simultaneously serve as a nonlinear medium for generating of Brillouin radiation with a frequency
shift [37–43].

The approach developed in this work is based on the fact that a distributed feedback semiconductor
laser (DFB laser) captures the natural frequency of an external fiber resonator, as shown in Fig. 1a.
External fiber resonators can be made from standard components and have a low cost. To implement
frequency self-locking, the radiation of a semiconductor DFB laser is passed through an external high-
Q ring resonator, and then it returns to the DFB laser resonator through a feedback fiber, imposing on
it generation at the natural frequency of the external resonator. A significant (more than 1000 times)
narrowing of the generation line of a standard inexpensive DFB laser connected to an external fiber ring
resonator has been demonstrated [44, 45]. After frequency lock, any slow change in the frequency of the
fiber resonator mode (for example, due to temperature fluctuations) leads to a simultaneous change in
the laser frequency. However, in real conditions with environmental noise, the laser operates stably with
generation of one longitudinal resonator mode for several seconds. These intervals of stable operation
are interrupted by short-term jumps in the generation intensity caused by the resonator mode jump.
Despite the fact that precise stabilization of the pump current and fixation of the fiber temperature make
it possible to increase these intervals up to tens of minutes, even rare mode jumps that disrupt stable
generation in the frequency lock mode make many practically important applications of lasers of this
type impossible [46].

The reason for the instabilities is illustrated in Fig. 1b. This is a violation of the balance of the lengths
of the ring interferometer and the optical feedback fiber in the laser configuration caused by changes in
the ambient temperature. The laser configuration is a combination of a semiconductor laser and two
external resonators (a ring interferometer and a feedback fiber resonator) [47]. When a semiconductor
laser operates in the ring frequency locking mode, its generation frequency coincides with the resonant
frequency of the ring. However, stable operation of the laser in the mode is possible only when the
resonant frequency of the ring is also resonant for the second external resonator. Therefore, stable
operation of the laser in the frequency lock mode requires continuous tuning of the resonance of the
second external resonator to the resonance of the ring. This can be done by modulating the laser
diode current or by controlling the fiber length of the second external resonator using a piezoactuator
(see Fig. 1a). For these purposes, a circuit with active optoelectronic feedback controlled by a simple
USB-DAQ controller was used.
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2. SINGLE-FREQUENCY LASER

The authors of [8] proposed a fiber configuration in which the generation lines are narrowed and the
operation of the semiconductor DFB laser is stabilized due to frequency lock-on in combination with
active optoelectronic feedback controlled by a simple USB-DAQ (USB data acquisition) controller. It
is important that the generation line is narrowed by the frequency locking, while active feedback only
helps to maintain this passive stabilization mode. Since it is difficult to implement these electronic
circuits, such a combined solution is much less expensive than all known active stabilization circuits,
in particular, based on the method of Pound–Drever–Hall (PDH) and Hansch–Couillaud which is
commonly used in fiber lasers [48–50]. In addition, the technique makes it possible to control and
adjustment of the laser linewidth.

The experimental configuration of a semiconductor DFB laser coupled to a ring fiber resonator is
shown in Fig. 2a. A standard laser diode (MITSUBISHI FU-68PDF-V520M27B) operating at a
wavelength of 1534.85 nm with an output power of ∼5 mW is equipped with a built-in optical isolator
that attenuates the back-radiation power by ∼30 dB. The isolator eliminates the effects of uncontrolled
back reflection and reduces the feedback power received through the external ring resonator. To
implement the frequency lock-on, laser radiation passes through an optical circulator and is introduced
through a coupler into a ring resonator, which is formed by couplers 95/5 and 99/1 and includes ∼4 m
of standard SMF-28 fiber. The second coupler sends some of the radiation circulating in the resonator
through the circulator back to the DFB laser, providing passive feedback to frequency lock-on.

When the passive feedback loop is open, the laser operates in free mode. Its total generation linewidth
is approximately 10 MHz. When the feedback loop is closed, there is a frequency lock mode with a
sharp (∼3000 times) narrowing of the laser generation line measured by the self-heterodyne method
to several kHz [51]. In the self-locking mode with passive feedback, the width of the laser generation
line keep its minimum value for 1–100 s (depending on the level of environmental noise). The rest
of the time, it slowly fluctuates in the range of 2.8–14 kHz until a mode jumps. The problem of
optoelectronic feedback based on an inexpensive multifunctional USB controller DAQ NI USB-6009
(National Instrument, United States) controlled by a PC is to maintain the operation of the laser in the
self-locking mode (i.e., to prevent the detuning frequency from operating range of a stable generation),
avoiding mode jumps. For this purpose, the radiation power reflected by the ring resonator (port B)
and recorded by the photodetector must be kept constant at a given level. The deviation of the reflected
power parameter from the set value is used as an error signal for the DAQ microcontroller, which can
adjust the operating frequency of the laser in the range of about 1 GHz due to the slight deviation of the
laser diode current. When the power parameter R is strictly related with some set value Rset, both the
laser frequency detuning from the ring resonator transmission peak and the laser linewidth are stabilized
using optoelectronic feedback. The curves in Fig. 2b show the self-heterodyne laser spectra recorded
with various set values Rset. At a minimum Rset = Rmin ∼ 0.08, the laser frequency coincides with one
of the transmission peaks of the ring resonator, and the generation linewidth takes on a minimum value
of ∼2.8 kHz. Detailed characteristics of the laser are described in [8].

3. TWO-FREQUENCY BRILLOUIN LASER

The authors of [9] developed a fiber configuration for a two-frequency Brillouin laser. In the new
configuration shown in Fig. 3a, the same ring fiber resonator is used both for frequency lock-on of the
DFB laser and for generating the Stokes component of the Brillouin radiation. Just like in the previous
case, a simple and inexpensive USB-DAQ card is used to stabilize the system, preventing mode jumps.
It is important that the stable operation of the laser at two strictly coupled frequencies is provided by
the frequency lock-on, while the active feedback loop only helps to maintain this mode. The frequency
lock-on keeps the DFB laser in continuous synchronization with the external ring resonator, providing
ideal laser-to-ring coupling for resonant (low-noise) Brillouin pumping.

The measured characteristics of a simple two-frequency laser are similar to characteristics of
expensive analogues. The Lorentz line width (measured by the method from [52, 53]) at the pump
and Stokes signal frequencies is <270 Hz and <110 Hz, respectively, and the width of the radio
frequency (RF) beat spectrum between them is<300 Hz (Fig. 4a). This is an important result, especially
considering that the system does not require serious temperature stabilization. The laser output power
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Fig. 2. Pattern of a single-frequency laser. (a) Schematic diagram of a laser and (b) self-heterodyne spectra of a laser
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Fig. 3. Pattern of a two-frequency laser. (a) Experimental configuration of a two-frequency Brillouin laser and
(b) optical spectra for two laser channels: Stokes frequency (1) and pump frequency (2).

is ∼9 mW and ∼100 μW for pump and Stokes radiation, respectively, and allows further power scaling
by external amplifiers. In this case, the laser power at the pump frequency can be amplified using an
erbium doped fiber amplifier (EDFA), while using an external Brillouin amplifier (made from the same
fiber as the ring resonator and pumped by a laser amplified in EDFA) is preferable (and naturally) for
narrowband amplification of the Stokes signal. The operating frequencies of the laser are strictly tied to
the resonances of the ring resonator, and their drift measured in the experiment (∼8.8 MHz min−1) is
mainly determined by changes in the ambient temperature.

Ambient temperature drift is the main source of instability in a two-frequency laser. To reduce this
influence, the laser configuration is placed in a foam box, but this does not prevent the slow drift of the
laser frequency. The use of an optional thermal controller applied to the entire laser configuration limits
laser frequency drift and minimizes RF spectrum broadening. Changes in ambient temperature affect
both the length of the ring resonator and the length of the feedback loop fiber, changing the relative
position of their resonant frequencies. These resonances must coincide to stabilize laser operation. The
electronic feedback circuit works against thermal noise by always trying to keep the resonances aligned.
To do this, it adjusts the phase delay in the optical feedback loop by smoothly changing the voltage
applied to the piezoactuator. However, the dynamic range of the piezo actuator is limited. When its limit
is exhausted, the phase must be reset for an integer number of periods, and this is possible only through
a step change in the voltage on the piezoactuator. Control signal jumps destabilize the laser for a short
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stabilization of the laser configuration as a whole.

time. Thus, the stabilization system (on a piezoactuator) makes it possible to stabilize laser generation
as long as the laser generation frequency is within a certain frequency range. When it leaves this range
under the influence of temperature drift, a mode jumps. With a characteristic laser frequency drift of
∼8 MHz min−1 (under laboratory conditions), the typical time between mode jumps is ∼7−10 min.

Additional thermal control of the entire laser module was used to permanently stabilize the laser.
The result is shown in Fig. 4b. An electrical signal applied to a piezoactuator was used as an error
signal in this system. When its deviation from the mean value exceeded a certain value, the temperature
of the system changed in the direction that reduced this deviation. A typical change in temperature
inside the laser module for one thermal pulse was ∼0.1◦C, and the characteristic time of temperature
fluctuations was 5–7 min. To control the frequency drift, a technique was developed based on continuous
measurement of the peak of the radio frequency spectrum of optical radiation beats recorded from two
laser outputs. This ensured long-term stability of the laser. In this case, the laser frequency drift was
<80 MHz, and the variations in the peak frequency of the RF beat spectrum were limited to <5 kHz. It
is important that keeping the beat frequency within this range completely prevented mode jumps.

4. BRILLOUIN LASER BASED ON A HIGH-Q RESONATOR

The authors of [10] proposed and studied another configuration of a narrow-band two-frequency laser
(Fig. 5a). Unlike previous two-frequency laser configurations, a fiber ring resonator made (and then
included in the configuration) from one fiber coupler instead of two fiber couplers as usual was used.
The new laser design made it possible to reduce optical losses in the ring resonator (by a factor of two
compared to a ring resonator with two input fibers) providing an increased quality factor. Consequently,
the consumer properties of the two-frequency laser were significantly improved. The output power for
Stokes radiation is increased by two times. The threshold power of the Brillouin generation is reduced
by a factor of two compared with previous works. The Lorentzian linewidth of the laser radiation has
become 30% narrower than that previously demonstrated in [9].

Generally, the laser produces continuous narrow-band radiation simultaneously at the pump and
Stokes signal frequencies. The laser diode operates in the ring fiber resonator frequency locking mode,
which narrows the Lorentz linewidth by a factor of ∼10 000 to ∼400 Hz. The operation of the laser in
this mode is supported by an active optoelectronic feedback controlled by a simple microcontroller. The
accumulation of narrow-band pump laser radiation inside the ring resonator makes the ring resonator
work as a continuous-wave Brillouin laser radiating with a Lorentzian spectral linewidth of ∼75 Hz
(Fig. 5b). As is known, this is the narrowest laser linewidth ever recorded with DFB lasers in a frequency
lock-on configuration through an external fiber resonator. Previously, the Lorentz linewidth ∼125 Hz
was obtained with a more complex configuration by locking the frequency of a fiber grating [38] (for
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comparison, the linewidth of a commercial laser with frequency lock in the whispering gallery mode
is ∼300 Hz [54]); the typical Lorentz linewidth of a Brillouin laser (on a fiber resonator 25 km) is
∼30 Hz [55]. The threshold pump power in our experiment is ∼1.5 mW. The Stokes intensity relative
noise is < −90 dB Hz−1, and the phase noise is < −100 dB Hz−1 for radio frequencies >30 kHz.

Comparison of Figs. 2a, 3a, and 5a makes it possible to see the fundamental difference in the laser
stabilization in the operating mode. In the configurations of the first two lasers based on the frequency
locking, the feedback signal is increased when the semiconductor laser locks on to the frequency of the
resonator. In the latter case, it seems to take on a minimum value when locking the frequency. The
fact that this is not the case becomes clear if we take into account the induced birefringence in the ring
resonator of the laser, which changes the polarization of light during a single passage of the ring to
perpendicular. The discovered effect was amplified and used in a new configuration of a polarization-
maintaining fiber laser [56]. Its advantage is a much better resistance to external influences than all
previous configurations of narrow-band lasers considered in this work.

5. APPLICATIONS OF LASERS FOR DISTRIBUTED MEASUREMENTS

Although distributed Rayleigh and Brillouin scattering fiber sensors [57–62] are currently widely
used in the oil and gas industry, nuclear power, and construction of large infrastructure facilities,
their relatively high cost remains the main factor limiting their applications only by resource-intensive
industries. The key and most expensive part of the analyzer of such a sensor is the master oscillator
module. The configuration of a single-frequency polarization-maintaining fiber laser developed in [12]
was tested as a master source in a reflectometric fiber system of a distributed vibration sensor. The
ability of a coherent reflectometer based on a semiconductor laser with frequency lock to detect and
localize acoustic disturbances in a 9 km test fiber line was evaluated in an experiment. It was shown that
the efficiency (signal-to-noise ratio) of vibration source detection and the accuracy of its localization is
no worse than when using an expensive standard master oscillator.

The authors of [13] studied the ability of the system to restore the frequency spectrum of disturbances,
and calculated a signal-to-noise ratio for distributed vibration frequency measurements over a length
of 4000 m in the frequency range of 350–5600 Hz. For comparison, the same measurements using
the same reflectometer under the same excitation conditions were carried out using a commercial fiber
laser (Koheras Adjustik, NKT Photonics) with an ultranarrow generation line (∼100 Hz). This made it
possible to determine the limiting parameters of the system due to the use of a semiconductor laser with
frequency lock. Thus, we have quantitatively substantiated the use of a conventional telecommunication
semiconductor laser in the lock-on mode of the external resonator frequency to operate as a master
oscillator of a coherent reflectometer specialized for distributed vibration detection. The values of the
signal-to-noise ratio confirm the ability of the system to perform a distributed measurement of vibration
frequencies with a spatial resolution of ∼10 m.
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The ability to continuously generate two strictly coupled frequencies makes the laser efficient for
many applications, including high-resolution spectroscopy, phase-coherent optical communication,
distributed fiber monitoring, coherent optical spectrum analysis, and microwave photonics. For many
of them, a subkilohertz generation linewidth is a necessary condition; for others, the simplicity of the
configuration is more important. The authors of [15] studied the possibility of using a two-frequency
narrow-band laser shown in Fig. 3a as a master oscillator of a Brillouin analyzer. In contrast to other
similar solutions based on Brillouin lasers [63, 64], a frequency locking laser was used for the first time
in the work. This idea was borrowed later in [65].

The measured laser characteristics significantly exceed the requirements for laser modules
(< 15 kHz) commonly used in BOTDA (Brillouin optical time-domain analyzer) [66]. Figure 6a shows
the optical layout of the BOTDA designed to work with a distributed fiber temperature and tension
sensor. The use of a laser operating at two fixed frequencies greatly simplified the BOTDA system,
as it eliminated the broadband electro-optic modulator (EOM) and high-power microwave oscillator
powering the EOM from the traditional BOTDA configuration based on a single narrow-band laser
source. These relatively expensive devices make up a significant portion of the cost of the BOTDA
system. In addition, the expensive wavelength lock electronics that were part of the Brillouin lasers
proposed earlier for applications in BOTDA [63] are not used in the laser, which provides self-stabilized
optical signal generation at the Stokes frequency. Instead, an inexpensive electro-optic modulator
controlled by a standard RF generator with a signal up to ∼1 GHz is used in the proposed BOTDA
system. In this configuration, the main frequency shift (∼11 GHz) is provided by the laser, and the
electro-optic modulator is used only for additional frequency tuning in a small range. Moreover, the
tuning range of the radio frequency generator up to 100 MHz turned out to be quite enough for all
measurements that were carried out when testing the analyzer on a specially designed calibration fiber
line. The ability of an inexpensive laser device to work with a BOTDA sensor has been tested under
commercial BOTDA; distributed measurements of the Brillouin frequency shift in a 10 km fiber test line
with a spatial resolution of 1.5 m and an accuracy of up to ∼2◦C are also demonstrated. Figure 6b shows
typical reflectograms recorded by the BOTDA (gray curve) and commercial analyzer (black curve) (OZ-
Optics, Canada). The performance of the system associated with the use of a two-frequency laser did
not degrade during the measurements. The details of its work and consumer properties are described in
detail in [15].

CONCLUSIONS

In this work, a standard semiconductor DFB laser was used to develop a stable narrow-band
laser source. The laser is stabilized in frequency lock-on mode by means of active optoelectronic
feedback controlled by an inexpensive USB-DAQ card (via modulation of the DFB laser current or a

OPTOELECTRONICS, INSTRUMENTATION AND DATA PROCESSING Vol. 59 No. 1 2023



BRILLOUIN LASERS AND SENSORS 73

piezo actuator that controls the length of the fiber in the optical feedback circuit). For two-frequency
generation, the same ring fiber resonator is used both for frequency self-locking of the DFB laser and for
generating the Stokes component of Brillouin radiation. In this case, the maximum achievable values
of the generation linewidth at the Brillouin frequency are determined by the quality factor of the external
ring resonator. To achieve a record-breaking narrow generation line (∼75 Hz), a high-Q ring resonator
made from a single fiber coupler was used. A special thermal control was applied to the entire laser
unit to reduce the laser frequency drift to < 80 MHz and to suppress the mode jump. The possibility of
using a narrow-band two-frequency laser as a master oscillator of the BOTDA was also studied, which
greatly simplifies its design. Comparison with a commercial system demonstrated that there was no
degradation in BOTDA performance due to the use of the developed two-frequency laser.
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