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We propose the model of a harmonically mode-locked
soliton fiber ring laser based on the nonlinear polarization
rotation taking into account the gain depletion and recovery
effects. It is shown that a specific timing jitter could arise
in such lasers, since the pulses in the cavity are not strongly
identical. To suppress the jitter and stabilize the harmonic
mode-locking operation, a method using a small frequency
shift followed by the laser radiation filtering is described.
The performed numerical simulation shows that the pro-
posed method is able to provide extremely stable harmonic
mode locking in a soliton fiber ring laser. © 2019 Optical
Society of America

https://doi.org/10.1364/OL.45.000184

Laser sources delivering high-repetition-rate ultrashort pulses
are highly demanded in numerous photonic applications [1].
Among them, harmonically mode-locked (HML) soliton fiber
lasers exhibiting advantageous consumer properties, such as
compactness, reliability, low cost, and ability to maintain con-
venient output are mostly demanded [2]. Some HML laser
configurations compose an intra-cavity filter, such as a high-Q
built-in etalon with a free spectral range (FSR) equal to the pulse
repetition rate, able to select individual modes from thousands
of laser cavity modes to generate multi-gigahertz subpicosecond
pulse trains [3]. The disadvantage of this method is the require-
ment of complex stabilization setups to synchronize the FSR of
the etalon with the repetition rate of the laser [4]. Technically,
the simplest way to implement HML in a ring fiber cavity is to
rearrange the pulses generated through the passive mode lock-
ing, making their distribution inside the cavity strongly periodic
[5,6]. Passive HML fiber lasers which are able to scale pulse rep-
etition rates up to 20 GHz and more have been reported recently
[7,8]. Timing jitter approaching 2% of the interpulse interval
and supermode suppression levels (SSLs) varying within a wide
range from−15 to−60 dB and below [8–10] are considered to
be typical indicators of the stability of the operation achieved
with the HML lasers.

It is commonly accepted that a regular temporal pattern of
HML formed in a fiber ring laser is induced by the repulsion
forces between the pulses [5,6]. However, the physics of this
interaction is not clear in detail. The interaction between pulses

can include repulsion between antiphase pulses, interaction
through saturating and relaxing dissipative parameters [11], and
interaction through acoustic waves induced by electrostriction
[12]. Besides, the role of a continuous-wave (CW) component
of the optical spectrum in HML is still under discussion. It was
theoretically demonstrated that a CW component acts as an
efficient agent to manage the interaction between neighboring
pulses. It has also been reported independently that a low power
external CW does not have a major impact on the stability of
the harmonic mode-locking distribution, thus highlighting the
robustness of an initial state HML against the external injection
[13,14].

In this Letter, we try to emphasize the possible complexity
of stable HML and assume that its stabilization is provided by
a cooperative action of several mechanisms. This assumption is
encouraged by the results of a report on a Tm-Ho fiber ring laser
with a hybrid mode locking combining the frequency-shifted
feedback (FSF) and nonlinear polarization rotation (NPR) [9].
The laser ring cavity composes segments of active and passive
single-mode fibers (SMFs) exhibiting a total anomalous dis-
persion. An acousto-optic shifter with a frequency shift about
40 MHz is also included in the cavity. Near the lasing threshold
the laser generates subpicosecond soliton pulses with the funda-
mental frequency of 29.2 MHz. When the pump is increased,
the laser starts to operate in a HML regime, demonstrating
effective suppression of the supermode noise. The results of the
laser operation at the repetition rate of 409.4 MHz (14th har-
monic of the cavity) and with a SSL below−66 dB are shown in
Fig. 1(a) [9]. With an increase in the cavity length and decrease
of the fundamental frequency down to 12.4 MHz, a stable
HML operation is maintained. For laser operating at 1 GHz
(81st harmonic of the longer cavity), the SSL is about −60 dB
[Fig. 1(b)].

Further, we explore and describe the physical mechanism
responsible for extremely stable operation in the HML lasers.
The fact that a stable HML regime in Ref. [9] is available for a
wide range of repetition rates and cavity lengths excludes con-
sideration of the transverse acoustic wave excitation mechanism
as a mechanism responsible for laser stabilization [15]. The
mechanism of HML stabilization associated with a separate
CW component is also excluded due to the absence of this com-
ponent in the laser optical spectrum. As a result, the repulsion
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Fig. 1. RF spectrum of a HML Tm-Ho fiber ring laser with FSF.
(a) Harmonic mode-locked operation showing the 14th harmonic of
the cavity (fundamental frequency is 29.2 MHz). Inset: the RF spec-
trum with a 2.0 GHz bandwidth [9]. (b) Same for the 81st harmonic
of the laser with the longer cavity. (The fundamental frequency is
12.4 MHz.)

Fig. 2. (a) Scheme of the time-dependent gain across an amplified
soliton pulse. (b) Scheme of interaction through GDR in the cavity
with a period TR = T1 + T2. (T1, T2 are the time intervals between the
pulses.)

of pulses through the gain depletion and recovery (GDR) [16]
remains the only mechanism responsible for pulse interaction.

Qualitatively, the laser gain is depleted while transferring
energy to a traversing pulse. As a result, the pulse experiences
a time-dependent gain, i.e., the leading edge of the pulse sees
a larger gain than the trailing edge [Fig. 2(a)]. The pulse with
group velocity v−1

g = dt/dz under such a condition acquires
group-velocity drift towards the region of higher gain. Denoting
the gain depletion during interaction with the pulse as 1g , it
can be shown that this group-velocity drift is proportional to the
value of1g [16].

The GDR is described by the standard rate equation

dg s

dt
=

g s 0 − g s

τg
−

g s |A(z, t)|2

E g
. (1)

Here g s 0 is the unsaturated gain, and E g is the gain satura-
tion energy. Assuming that the energy E s of the pulse is low
compared to the value of E g , gain depletion can be expressed
as 1g = g s E s /E g , where g s corresponds to the value of the
gain just before the arriving of the pulse. If the laser cavity
contains several pulses, then the GDR effect leads to their
mutual repulsion. Let us analyze this interaction in more detail.
For simplicity, we consider the case of two pulses. However,
generalization for an arbitrary number of pulses could be also
implemented. The used terms are illustrated in Fig. 2(b). A
change of the time intervals between pulses is proportional to
the difference in the group-velocity drifts:

d(T1 − T2)

dz
=1g 1 −1g 2. (2)

At the same time, in linear approximation for relaxation valid at
µ= TR/τg � 1, the gain depletions and interpulse distances
are connected by the next equations:

E g

E s 3−i
1g 3−i −

E g

E s i
1g i +1g i =µTi , i = 1, 2. (3)

Assuming that the pulse energies E si are equal for all pulses,
Eqs. (2) and (3) yield

d(T1 − T2)

dz
=−

µ

2E g /E s − 1
(T1 − T2)

=−α(T1 − T2), α > 0. (4)

Thus, the initial difference of time intervals tends to zero expo-
nentially: (T1 − T2)= (T1 − T2)0 exp(−αz), ensuring an
equidistant pulse arrangement inside the cavity. This arrange-
ment is stable, since any fluctuation of |T1 − T2|> 0 decreases
with the same decrement α. However, a deeper analysis shows
that the higher integral gain

∫ L
0 g si(z)dz corresponds to the

higher pulse energy E si [Fig. 2(b)]. Thus, the assumption about
equality of the pulse energies is not precisely true, and the pulse
train possesses intensity jitter. Denoting the difference of the
pulse energies as E s 1 − E s 2 =1(z) > 0, Eq. (4) describing
evolution of the interpulse distances can be expressed as

d(T1 − T2)

dz
=−α(T1 − T2)−

µ

2E g
1 (z) T2 (z) . (5)

In this case, the equidistant pulse arrangement T1 = T2 no
longer corresponds to the stationary point of Eq. (5). Assuming
that 1/E g � 1 is a small random variable, we obtain that the
uniform pulse arrangement due to GDR is accompanied by
random changes in the interpulse distances referred to as the
timing jitter of a pulse train. There are several sources of timing
jitter in mode-locked lasers: pump power fluctuations, various
thermal effects, and noise of the laser gain medium. An HML
fiber laser has an additional source of the timing jitter owing
to the uncontrollable changes of adjacent pulse temporal posi-
tions and, hence, this jitter is significantly stronger than the
jitter in lasers operating the fundamental frequency [15]. The
case described by Eq. (5) exactly belongs to this type of timing
jitter specific for HML lasers. We will consider the means of
suppression of this jitter providing stability to the pulse train
comparable with the laser operating fundamental frequency.

Obviously, the simplest way to suppress the jitter is to elimi-
nate the pulse energy difference 1. For this, the method of
sliding-frequency filters proposed for soliton transmission lines
[17,18] could be used. However, in the considered case, this
mechanism is used to stabilize the hybrid mode-locking scheme.
Its action is based on the fact that soliton pulses of different
energies also differ in group velocities and frequencies. Let us
explain this process, following the scheme depicted in Fig. 3.
We consider the case when the solitons are almost periodically
arranged along the cavity T1 ≈ T2, wherein the difference in
velocities dti/dz is mainly determined by the difference in soli-
ton energies E si (providing the velocity drift ∝ g s E s /E g ). An
example of change in the soliton velocities is shown in Fig. 3(a).
Here the energy of the second soliton is higher than that of the
first soliton E2(z) > E1(z) along the whole segment z. Using
the Taylor expansion, the soliton velocities can be expressed
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Fig. 3. (a) Change in the velocities dti/dz of solitons with different
energies. (b) Equalization of soliton energies using the frequency shift.

in terms of the total average velocity (v̄)−1
= β1 and soliton

frequencies:

dti/dz≈ β1 + β2 (ωi (z)−ω0)= β1 + β2�i (z) ,

where ω0 is the carrier frequency, and ωi , �i are the pulse
frequencies. Hence, at anomalous group-velocity dispersion
(GVD) β2 < 0 a soliton of higher energy has a lower frequency,
and vice versa [Fig. 3(b)].

To equalize energies, the FSF method employs the spec-
tral filtering effect. In general, a special filter can be used for
this, but we consider the model case of a spectrally limited
gain. Figure 3(b) shows that at a leftward frequency shift
�′ =�+ 2π f , f < 0, and the lower frequency pulse experi-
ences the gain less than the pulse with frequency�1 >�2. As a
result, the pulse energies and, consequently, the pulse velocities
and frequencies are equalized. This mechanism is stable and
selective, i.e., the pulse with the lower energy always acquires
the higher gain. When one pulse acquires higher energy than
the other, its velocity dti/dz increases, and its frequency shifts
leftward from the gain peak to an energetically unfavorable
frequency domain. It is worth nothing that the rightward
frequency shift f > 0 has an opposite effect. Higher energy soli-
tons acquire a higher gain, while lower energy pulses gradually
degenerate. As a result, the harmonic arrangement of pulses over
the cavity is destroyed. The proposed model is applicable to the
cases when there is only one mechanism associated with GDR
which is responsible for HML establishment. The effectiveness
of this mechanism is determined by the ratio of the gain recovery
timescale to the interpulse spacing, and it decreases with an
increasing pulse repetition rate. Thus, at a high repetition rate
(> 10 GHz), the proposed mechanism is effective only for
pulses of sufficiently high energy depleting the gain significantly.

To verify this mechanism, a numerical simulation of a
soliton ring fiber laser with GDR was performed. The laser
configuration is shown in Fig. 4.

We assume that the radiation propagating in the gain fiber
is linearly polarized, and it is elliptically polarized propagating
in a SMF. The SMF has negligibly low birefringence, and a
mode-locking effect occurs in accordance with the model [19].

The field propagation in the gain fiber is described by the
Ginzburg–Landau equation

∂ A
∂z
− i

β2g

2

∂2 A
∂t2
− iγg |A|2 A=

g A
2
+
β2 f

2

∂2 A
∂t2

,

where z is the coordinate along the fiber, β2g is the GVD,
and γg is the Kerr nonlinearity of the gain fiber. To sim-
plify the simulation, the gain is divided into two parts:

Fig. 4. Fiber ring laser configuration used in the numerical simula-
tion.

g (z, t)= g n(z)+ g s (z, t), g n� g s . The first term respon-
sible for major contribution to the gain is time-independent.
Thus, it can be averaged over the simulation window as

g n(z)= g n0

(
1+

1

E g

∫ τwin

0
|A(z, t)|2dt

)−1

,

where E g is the gain saturation energy, and τwin is the size of
simulation window. The second part corresponds to GDR, and
it is described by Eq. (1). The gain spectral filtering is employed
in parabolic approximation β2 f = (g n − ḡ s )/�

2
g ≈ g n/�

2
g ,

where �g is a HWFM gain line bandwidth, and the overbar
indicates averaging over the simulation window. The light
propagation in the SMF is described by two coupled nonlinear
Schrödinger equations:

∂ A j

∂z
− i

β2

2

∂2 A j

∂t2
− iγ

(∣∣A j

∣∣2 + 2

3

∣∣A3− j

∣∣2) A j

−
i
3
γ A∗j A2

3− j = 0, j = 1, 2,

where β2 is the GVD, and γ is the Kerr nonlinearity coef-
ficient in the SMF. The amplitudes A j are determined by
Polarizer 1 as A1 = A cos ϕ1, A2 = A sin ϕ1, the polarization
controller tunes the polarization angle as A2 = A2 exp iθ ,
and Polarizer 2 restores the original state of polarization
A= A1 cos ϕ2 + A2 sin ϕ2. The fiber lengths are lg = 2.5 m
for the gain fiber and lSMF = 5 m for the SMF. The periodic
boundary conditions are applied, i.e., the simulation win-
dow corresponds to the cavity period τwin = TR = T1 + T2.
The frequency shifter and output coupler are accounted
for in the transfer functions A′(�)= A(�− 2π f ) and
Tc ≡ A′/A=0.95. The frequency shift corresponds to the
step of the frequency grid 2π f = 1/TR . The main parameters of
the model are listed in Table 1. We should note that the values of
τg and TR corresponding to real lasers are 1000 times more but,
to accelerate the simulation process, these values are chosen to
be sufficiently small. They fully satisfy the necessary condition
TR � τg , and the simulation provides an adequate descrip-
tion of the pulse interaction in the cavity. Two identical pulses
exhibiting a small deviation from the equidistant arrangement
|T1 − T2| = 1 ps are chosen as initial conditions. The simula-
tion results are shown in Fig. 5. Note that a cyclic shift of the
simulation window has been periodically applied.

First, we consider the model that does not use the frequency
shifter [Figs. 5(a)–5(c)]. The simulation results show that the
conditions for amplification of pulses are not completely equiv-
alent. Initially, the same pulses acquire unequal energies with
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Table 1. Parameters of the Simulation

Parameter Value Parameter Value

γ , γg (W−1 m−1) 0.0033 E g (pJ) 30
β2,β2g (ps2 m−1) −0.018 TR (ps) 19.2
�g (ps−1) 0.3 τg (ps) 300
g n0 (m−1) 1.5 g s 0 (m−1) 0.1
ϕ1,ϕ2 π/8,π/2 θ 3π/4− 0.25

Fig. 5. (a)–(c) Simulation without the frequency shifter.
(a) Evolution of the pulse arrangement inside the cavity. Right: the
final arrangement of the pulses and GDR distribution. (b) Change of
the pulse energy difference. (c) Evolution of the interpulse distances.
(d)–(f ) Same as in (a)–(c), but with the frequency shifter.

the difference of about 0.5 pJ due to difference in the GDR
values. Then, during the interaction, the interpulse distances
are equalized and the value of 1 decreases. However, after 104

round-trips, it is about 1% of the single pulse energy. Finally,
in the system without a frequency shifter, the pulse interaction
through the GDR leads to the pulse arrangement in the cavity
that differs from the HML equidistant distribution by signifi-
cant timing jitter |T2 − T1| ≈ 0.25 ps, which is more than 2.5%
of the interpulse distance. The frequency shifter included in the
system [Figs. 5(d)–5(f )] allows reducing the pulse energy differ-
ence down to nearly 0 for 1000 round-trips, thereby leading to
total suppression of the timing jitter T2 = T1 = TR/2 and stable
harmonic mode locking.

As mentioned above, the considered HML stabilization
method can be referred to as hybrid mode locking combining
the FSF and NPR techniques. Importantly, in the proposed
configuration, pulse mode locking occurs due to the NPR
mechanism alone. The role of the FSF is a non-destructive
pulse perturbation, leading only to the small frequency shift
inside the spectral filter. In the proposed model, any small
frequency shift leads to stabilization of the equidistant pulse
arrangement achieved through GDR. The shift increase leads to
a faster stabilization dynamics. However, it is worth noting that
a system with the fixed parameters and given initial conditions
is characterized by a certain threshold shift value providing

HML stabilization. Exceeding this threshold value can break
the dissipative balance and decrease the number of pulses. The
proposed scheme of timing jitter suppression for a system with
the GDR can be generalized for an arbitrary number of soliton
pulses, since the dependence of the pulse frequency on its energy
is extended to this case as well.

In conclusion, in this Letter, the soliton fiber ring laser with
the passive HML has been considered. Here the GDR is pro-
posed as the pulse interaction mechanism ensuring a uniform
distribution of the pulses inside the cavity. It is shown that
the HML associated with such a mechanism causes the loss of
identity of the pulses in the train, thus provoking timing jitter.
To suppress the jitter, we propose a method to stabilize HML
operation employing a small frequency shift followed by spectral
filtering.
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