
Research Article Vol. 39, No. 11 / November 2022 / Journal of the Optical Society of America A 2073

Non-specular reflection of a narrow spatially
phase-modulated Gaussian beam
Yuliya S. Dadoenkova,1 Igor A. Glukhov,1,2 Sergey G. Moiseev,2,3 AND
Florian F. L. Bentivegna1,*
1Laboratoire des Sciences et Techniques de l’Information, de la Communication et de la Connaissance (Lab-STICC, UMR6285), CNRS,
École Nationale d’Ingénieurs de Brest, 29238 Brest Cedex 3, France
2Ulyanovsk State University, Leo Tolstoy Str. 42, 432970Ulyanovsk, Russia
3Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences, Ulyanovsk Branch, Goncharov Str. 48/2,
432071Ulyanovsk, Russia
*Corresponding author: fb@enib.fr

Received 12 July 2022; revised 9 October 2022; accepted 10 October 2022; posted 10 October 2022; published 27 October 2022

The lateral and angular Goos–Hänchen shifts undergone upon reflection on a dielectric plate by a spatially phase-
modulated Gaussian beam are derived. It is shown that the amplitude and direction of both lateral and angular
shifts are very sensitive to the degree of spatial phase modulation of the incident beam, so that such modulation thus
provides a means to control those shifts. It is also shown that the modulation incurs some beam reshaping upon
reflection. Analytical calculations of the lateral shift are found to be in good agreement with numerical simulations
of beam propagation before and after reflection. In these simulations, the required spatial transverse phase modu-
lation is achieved by focusing a microwave Gaussian beam onto the dielectric plate with a non-spherical lens or a
flat-surfaced thin lamella exhibiting a suitable gradient of its refractive index. The optimal parameters governing
the spatial phase modulation are discussed to achieve: (i) enhancement of the lateral shift of a spatially phase-
modulated beam in comparison to that of a non-modulated beam and (ii) simultaneous large values of reflectivity
and of the lateral shift, while keeping the reshaping of the reflected beam to a minimum. © 2022 Optica Publishing

Group

https://doi.org/10.1364/JOSAA.470180

1. INTRODUCTION

Non-specular effects occurring upon the reflection of light wave
packets from various optical structures have been intensively
studied in the last two decades. These effects include both
lateral and transverse shifts of reflected beams relative to the
position predicted by ray optics [first described, in the context
of total internal reflection, as Goos–Hänchen (GH) [1] and
Imbert–Fedorov [2,3] effects, respectively] [4], as well as the
corresponding angular shifts in the plane of incidence or per-
pendicular to it, i.e., deviations of the reflection angle from the
value it takes in the frame of geometric optics [5,6].

Although these effects are, as a rule, rather small, the beam
shifts have nevertheless been reported to take potentially sig-
nificant values in many configurations, including upon total
internal reflection [1,7], but also at the vicinity of minima of
the reflection coefficient, for instance, at Brewster and pseudo-
Brewster incidence angles [8–10], near the edges of photonic
bandgaps in photonic crystals [11], or in a nanophotonic cav-
ity [12]. In all cases, measurements of the beam shifts can be
made using conventional methods based on position sensitive
detectors, while a charge-coupled device can give more detailed
information about the profile of the reflected beam [13]. More

precise detection techniques include interferometric setups
[14,15] or signal enhancement techniques [7,10,16–19].

Far from being mere curiosities, such beam shifts can obvi-
ously be exploited to yield information about the material(s)
constituting the optical structure from which reflection takes
place or about the medium surrounding that structure. Indeed,
as they can be shown to be extremely sensitive to tiny variations
of material properties (in particular, permittivity) upon any
kind of external excitations (electric or magnetic fields, pressure,
temperature, mechanical strain, etc.), these effects are good can-
didates for the design of very precise sensors in particular, which
is one of the main reasons they have attracted much attention
lately. Indeed, lateral shifts can be put to use for the design of
bio- or chemical sensors [20,21] and surface plasmon resonance
sensors [22] or simply for precise measurement of refractive
indices [23]. In some systems, the dependence of the GH shift
on temperature can be used for the design of thermal sensors
[24,25]. Beyond sensing applications, the principles of optical
switches [26], beam splitters [27], and de/multiplexers [28] and
monitoring of local electric and magnetic fields [29] or optical
differential operation and image edge detection [30] have been
proposed on the basis of the GH effect.
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To that intent, however, it is also desirable to be able to
enhance and, particularly, control in a reversible way the beam
shifts, as well as relate the values they assume with the changes
of permittivity of the materials the light beam encounters.
The control of GH beam shifts has been studied in a variety of
functional materials and structures. For instance, an external
magnetic field can tune the GH shift in magnetic media [17,31–
36]. Similarly, in combined magneto-optic and electro-optic
systems, the shift can be controlled via external electric or mag-
netic fields [24,31,37,38]. A GH shift can be induced through
the electro-optic effect [39] or by misfit strain [8].

In all these instances, the focus has for the most part been
set on ways to design the optical system in which beam shifts
take place, as well as to select the properties of its constituents,
to achieve the desired control and enhancement of the effect
and possibly use it for applications. More rarely has the focus
been set on the properties of the beam itself, specifically on
the way it can be tailored for an enhanced control of the GH
effect, but also on the way the reflected beam can be distorted
as a corollary to that effect. Among those rarer studies, let us
note the demonstration that the lateral GH shift of light beams
reflected and transmitted through a layered dielectric structure
can be effectively controlled by focusing (and defocusing) the
incident beam [40], with an increase of the shift when the beam
is narrower. A significant reshaping of the reflected light beam
has been discussed in a number of studies [41–44], including the
observation that it can even split into two beams when a giant
shift occurs [45]. In multilayered structures, reshaping takes
place due to the interference between waves reflected from all
interfaces [46]. As a rule, beam distortion is also more noticeable
for narrow beams with waists of the same order of magnitude
as their wavelength. Thus, reshaping the beam upon reflection
requires additional studies.

In this paper, we discuss one such alternative method of exal-
tation of the lateral beam shift related not to specific properties
of the structure it interacts with, but to the properties of the
beam itself. Specifically, we present analytical and numerical
calculations to investigate the effect of a transverse spatial modu-
lation of the phase of a narrow Gaussian beam on lateral and
angular shifts, as well as the reshaping it undergoes in its plane of
incidence upon reflection off a simple dielectric isotropic plate.
Those calculations were carried out in the microwave domain.
The paper is organized as follows. In Section 2, we provide an
analytical derivation of the reflected microwave electric field
at the upper surface of the plate. In Section 3, we show how it
can be used for calculation of the lateral beam shift for various
degrees of phase modulation of the incoming wave packet. In
Section 4, we show the results of the numerical simulations of
beam propagation before and after reflection from the plate
and discuss the influence of the spatial phase modulation of
the Gaussian beam on its lateral and angular shifts, as well as
its reshaping upon reflection. The conclusions of our study
(Section 5) are followed with Appendix A, which describes
ways to achieve the desired phase modulation of the incoming
Gaussian beam.

2. GEOMETRY AND ANALYTICAL DESCRIPTION

In this study, we consider the reflection of a microwave Gaussian
beam from a simple, homogeneous, isotropic, dielectric, non-
magnetic plate of refractive index nP and thickness d , as shown
in Fig. 1. The refractive index of the surrounding medium is nS .
The upper and lower surfaces of the plate are parallel to the (x y )
plane of a Cartesian system of coordinates.

A two-dimensional (2D) monochromatic Gaussian
s -polarized beam (wavelength λ0 in vacuum and angular
frequency ω= 2πc/λ0) impinges on the top surface of the
plate. The propagation direction of the beam is determined by
its central wave vector kc , with kc = k0 nS , where k0 = 2π/λ0 is
the wavenumber of the beam in vacuum. The incidence angle θ
is defined as the angle between kc and the normal to the surface
parallel to the z axis. In the (x z) plane of incidence, a system of
x ′ and z′ axes (obtained through a rotation of the x and z axes
by an angle θ around the y axis) is associated to the beam, so
that its central wave vector is parallel to the z′ axis. The lateral
dimensions of the plate, along the x and y axes, are supposed
to be much larger than the diameter of the Gaussian beam, so
that side effects can be neglected. The choice of a 2D beam
description in which the electric field profile does not depend
on the y coordinate in the direction perpendicular to the plane
of incidence [see Eq. (1)] is justified by the fact that this study is
devoted to the non-specular effects (in particular, beam shifts)
that can be observed in that plane. Indeed, upon reflection, a
Gaussian beam undergoes a GH lateral shift1x in its plane of
incidence (Fig. 1) that can be seen as a translation of the central
wave vector of the reflected beam (solid red arrow) with respect
to the direction of specular reflection (dashed red arrow).

In this paper, we specifically study the effect of a spatial
modulation of the phase of the incident Gaussian beam on the
lateral (as well as angular) shift and the simultaneous reshaping
of the reflected beam. This modulation is quantified by the addi-
tional (in comparison with the expression of the field for a usual
Gaussian beam) complex exponential factor that depends on the

Fig. 1. Schematic of the system. A 2D Gaussian microwave beam
impinges on the upper surface of a dielectric plate of thickness d . The
incidence plane is (x z), and θ is the incidence angle. The lateral shift
of the reflected beam is denoted 1x . Solid and dashed curves respec-
tively show the profiles of the modulus and real part of the optical
electric fields of the incident (blue curves) and reflected (red curves)
beams. The dashed red arrow shows the direction of specular reflection
without lateral shift.
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real-valued coefficient ξ in the following expression of the trans-
verse electric field amplitude distribution E (i)

y (x
′, z′), in which

the origin common to the (x y z) and (x ′ y ′z′) Cartesian systems
of axes coincides with the center of the incident 2D Gaussian
beam in the plane of its waist, and the time dependence of the
propagating wave packet is chosen as exp(iω t):

E (i)
y (x

′, z′)= E0

√
w0

w(z′)
exp

[
−

(
1

w2(z′)
+ i

ξ

w2
0

)
x ′2
]

× exp

[
iη(z′)− ikc

(
z′ +

x ′2

2R(z′)

)]
.

(1)

In Eq. (1), z′ is the algebraic axial distance from the waist,
w(z′) is the beam radius (defined as the distance from the z′

axis for which the field amplitude falls to 1/e of its axial value),
w0 =w(0) is the waist radius, and E0 is the axial value of the
field amplitude at the waist. An important characteristic param-
eter of the Gaussian beam is its Rayleigh length z′R = k0w

2
0/2,

from which the z′-dependent beam parameters in Eq. (1) can be
deduced, namely, the beam radius at position z′,

w(z′)=w0

√
1+

(
z′

z′R

)2

, (2)

the radius of the wavefront curvature at position z′,

R(z′)=
z′2 + z′2R

z′
, (3)

and its Gouy phase

η(z′)= arctan

(
z′

z′R

)
. (4)

It should be noted that although similar at first glance, phase
factors exp{−iξ x ′2/w2

0} and exp{−ikc x ′2/2R(z′)} in Eq. (1)
are not equivalent, since the latter varies with the position z′

along the propagation axis of the incident beam and explicitly
depends on the curvature radius of the wavefront, especially
at large distances from the beam waist, and thus does not yield
a parabolic modulation of the phase. It is also worth noting
that the additional imaginary factor −iξ x ′2/w2

0 in the spatial
dependence of the field profile of a Gaussian beam is analogous
to a similar term describing linearly chirped Gaussian pulses
in the time/frequency domain [47,48]. The phase modulation
parameter ξ is thus the spatial equivalent of the linear chirp
parameter of such a pulse.

With the choice of origin for both systems of axes mentioned
above, the center line of the Gaussian incident beam crosses the
upper surface of the plate at the point {x = x ′ = 0, y = y ′ = 0,
z= z′ = 0}, and the center of the beam in the waist plane thus
coincides with z′ = 0 on that surface. In oblique incidence (for
θ 6= 0), the other points of the beam waist are located above or
below the upper surface of the dielectric plate. Using Eq. (1) and
the relations

x ′ = x cos θ, z′ = x sin θ, (5)

the complex amplitude of the incident electric field on the
upper surface of the plate (z= 0) in the (x , y , z) system of
coordinates is

E (i)
y (x , z= 0)= E0

√
w0

w(x )
exp

[
−

(
1

w2(x )
+ i

ξ

w2
0

)
x 2cos2θ

]

× exp

[
iη(x )− ikc

(
x sin θ +

1

2R(x )
x 2cos2θ

)]
,

(6)

where w(x ), R(x ), and η(x ) are thus calculated for
x = z′/ sin θ .

In the paraxial approximation, in the vicinity of the beam
waist (i.e., when z′� z′R ), one can see from Eqs. (2)–(4) that
w(z′) ≈ w0, R(z′) → ∞, and η (z′) ≈ 0 for all points inside
the beam spot at the upper surface of the plate (i.e., for z= 0).
Thus, the electric field distribution of the incident beam on that
surface can be written as

E (i)
y (x , z= 0)= E (i)

G (x ) exp (−ikcx x ) , (7a)

with

E (i)
G (x )= E0 exp

[
−
(1+ iξ)x 2cos2θ

w2
0

]
, (7b)

and where kcx = kc sinθ is the x component of the central wave
vector of the incident beam in the surrounding medium.

The spatial profile E (r)
y (x ) of the reflected beam at the upper

surface of the plate can then be obtained using the inverse spatial
Fourier transform [8,24]:

E (r)
y (x )=

1
√
π

∫
∞

−∞

E (i)
y (K )<(K + kcx) exp(i K x )dK , (8)

where

E (i)
y (K )=

∫
∞

−∞

E (i)
y (x ) exp(−i K x )dx

= E0
√
π

√
w2

0

(1+ iξ)cos2 θ
exp

[
−

1

4

w2
0 K 2

(1+ iξ)cos2 θ

]
(9)

is the incident field distribution in the spatial frequency
domain. In Eqs. (8) and (9), the spatial Fourier variable K is
defined as K = kx − kcx, where kx is the x component of the
wave vector k of any given spatial Fourier component of the
incoming field distribution E (i)

y (x ), and the corresponding
<(K + kcx)=<(kx ) is the complex reflection coefficient of the
system at a given position x across the beam at the surface of the
plate. This reflection coefficient < is deduced from Maxwell’s
equations and from the boundary conditions at each interface in
the system as [49]

<(kx )=
r
[
1− exp(2iktzd)

]
1− r 2 exp(2iktzd)

, with r =
kz − ktz

kz + ktz
, (10)

where, for any given spatial Fourier component of the incoming
field distribution, kz = k0nS cos θ ′ and ktz = k0 nP cos θ ′t are
the components along the z axis of its wave vector k and of its
corresponding refracted wave vector kt, respectively. Angles θ ′

and θ ′t are thus the incidence angle and refraction angle in the
plate respectively associated to k and kt and they are related by
Snell’s law nS sin θ ′ = nP sin θ ′t . The spread of values assumed
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by angles θ ′ and θ ′t reflects the divergence of the incoming
Gaussian beam. Equations (8)–(10) lead to determination of
the reflected beam intensity profile from which, after compari-
son with the incoming beam intensity profile, the value of the
lateral shift at the upper surface of the plate, denoted1x , can be
numerically deduced. As a rule, an angular shift1θ with respect
to the specular geometry can also be observed. Its value cannot
be deduced from the analytical approach described above and
discussed in Section 3 (as that approach yields the field distribu-
tion at the surface of the plate only), but it can be obtained from
numerical simulations of the propagation of the Gaussian beam
after reflection (see Section 4).

3. ANALYTICAL STUDY OF THE EFFECT OF
PHASE MODULATION ON THE REFLECTED
BEAM AT THE SURFACE OF THE PLATE

In this section, we apply the previous analytical description
to a Gaussian beam in the microwave domain, for which the
lateral and angular beam shifts are expected to reach large and
easily measurable values. Note that the intermediate Fourier
transforms expressed in Eqs. (8) and (9) require numerical
calculations.

Our simulations were carried out for a dielectric plate made
of fused quartz (relative permittivity εP = n2

P = 3.8 at vacuum
wavelength λ0 = 2.912 mm [44] and thickness d = 8.33 mm)
surrounded by air (nS = 1). For that value of thickness d , the
reflection coefficient< deduced from Eq. (10) can be shown to
reach a zero minimum at an incidence angle of approximately
18.5◦. Around that incidence angle, for small but non-zero
values of<, beam shifts are known to reach large values [9]. The
waist of the incident Gaussian beam is chosen as w0 = 3λ0. In
this case, the Rayleigh length is z′R ≈ 84.5 mm, so that we can
neglect the variations in beam diameter across the thickness of
the plate.

The transverse spatial distribution of the normalized
Gaussian amplitude E (i)

G (x )/E0 of the electromagnetic
field at the upper surface of the plate (z= 0) is shown in
Fig. 2 as a function of the incidence angle and for the spatial
modulation parameter ξ =−5. Figs. 2(a)–2(c) present the
modulus |E (i)

G /E0|, real part Re [E (i)
G /E0], and imaginary part

Im [E (i)
G /E0] of the normalized amplitude, respectively, and

Fig. 2(d) shows the cross sections of distributions in (a)–(c) for
an incidence angle θ = 20◦. As expected from Eq. (7b), the
distribution of the Gaussian field amplitude is symmetrical with

respect to the x axis (position x = 0 corresponds to the center of
the incident beam waist). Although the phase modulation of the
Gaussian beam (for ξ 6= 0) does not affect the envelope (modu-
lus) of the field amplitude, it does modify the real and imaginary
parts of E (i)

G (x ), and an increase of the modulation parameter
ξ leads to increasingly fast oscillations of Re [E (i)

G /E0] and
Im [E (i)

G /E0] along the x axis. In accordance with Eq. (7b), a
reversal of the sign of ξ reverses the sign of the imaginary part of
the Gaussian field amplitude. As a whole, the phase modulation
of the field can be expected to exert a noticeable influence on the
overall reflected beam, as the latter results from the interference
between multiple waves reflected from the upper and lower
surfaces of the dielectric plate.

This is clearly illustrated in Fig. 3, where the transverse dis-
tribution along the x axis of the normalized modulus |E (r )/E0|

of the reflected field at the upper surface of the plate (z= 0),
deduced from Eqs. (1)–(10), is shown as a function of incidence
angle θ and for different values of the spatial modulation param-
eter ξ . The black curves follow the position of maximum beam
intensity, i.e., a departure of those lines from x = 0 indicates
and quantifies the lateral beam shift1x . In the absence of spa-
tial modulation [ξ = 0, Fig. 3(a)], the reflected beam already
exhibits significant distortion, with respect to the Gaussian
profile of the incident beam, in particular, in the vicinity of
incidence angles corresponding to minima of the modulus of
reflection coefficient <— specifically, around θ = 18.5◦ and
θ = 60◦ [the precise values of those angles are determined using
Eq. (10)]. Indeed, near θ = 18.5◦, the reflected wave splits into
two beams with almost equal maxima. With an increase of the
absolute value of the spatial phase modulation parameter ξ
[Figs. 3(b)–3(g)], the distortion of the reflected field becomes
stronger, and larger intervals of θ appear for which the profile
of the reflected field is split and exhibits two peaks. Due to
this beam reshaping, the determination of the lateral shift, as
calculated analytically at the surface of the plate, is sometimes
ambiguous, since both maxima of the split beam can be of
comparable amplitudes—this is especially true in the case of a
non-modulated beam, as evidenced by the black lines in Fig. 3.

This ambiguity, however, is less of a difficulty for incidence
angles far from those for which |<| nears a minimum. In this
case, the reflected field is still split in two, but one maximum is
visibly larger than the other one [see, for example, Figs. 3(e)–
3(g), as well as the discussion of Fig. 4 in the next section],
and for all intents and purposes, the lateral beam shift 1x can
be defined as the shift in position of the brighter part of the

Fig. 2. Normalized distribution of the amplitude of the incident spatially modulated Gaussian beam at the upper surface of the plate (at z= 0) as
a function of the incidence angle and for spatial modulation parameter ξ =−5. (a) modulus |E (i)

G /E0|, (b) real part Re [E (i)
G /E0], and (c) imaginary

part Im [E (i)
G /E0]. (d) Cross sections of (a)–(c) for incidence angle θ = 20◦ (horizontal black dashed lines), where the red solid, blue dotted, and green

dashed curves denote the modulus and real and imaginary parts of the normalized field, respectively.
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Fig. 3. Distribution of the normalized modulus |E (r)
y /E0| of the reflected field at the upper surface of the plate (at z= 0) as a function of the x

coordinate and the incidence angle θ for values of the spatial phase modulation parameter equal to: (a) ξ = 0, (b) ξ =+3, (c) ξ =+5, (d) ξ =+7,
(e) ξ =−3, (f ) ξ =−5, and (g) ξ =−7. Black lines follow the position of the absolute maximum of the field amplitude when θ varies. The horizon-
tal dotted and dashed lines in (a), (e), (f ), and (g) correspond to incidence angles θ = 20◦ and θ = 25◦ and refer to the cases depicted in Fig. 4 and dis-
cussed in Section 4. The vertical white lines show the position of the center of the incident beam (x = 0).

Fig. 4. Numerical simulation of the total electric field amplitude distribution (normalized with respect to E0) for values of the spatial phase
modulation parameter equal to (a), (e) ξ = 0, (b), (f ) ξ =−3, (c), (g) ξ =−5, and (d), (h) ξ =−7, and for incidence angles θ = 20◦ (top panels) and
θ = 25◦ (bottom panels), in the case where the phase of the incident Gaussian beam is spatially modulated using a parabolically shaped biconvex lens.
The white dashed line denotes the center of the incoming beam, and the white dashed arrow indicates the direction of its specular reflection. The solid
and dotted arrows show the propagation directions of the first and second reflected beams, respectively. Note that the color scale for the normalized
field amplitude has been truncated to the [0; 0.5] interval to enhance the readability of the graphs.

reflected wave. The analytical calculations depicted in Fig. 3
show that, for such incidence angles, an increase of the spatial
phase modulation (increase of |ξ |) leads to an increase of the
lateral beam shift. It can also be noted that for 0< θ < 15◦ and
θ > 20◦, the lateral shift experienced upon reflection by a spa-
tially phase-modulated beam is coupled with significantly larger
values of the reflected field than is the case for a non-modulated
beam (ξ = 0). This fact makes spatially phase-modulated beams

particularly useful for so-called weak measurements of lateral
beam shifts [7,17,19]. For increasing absolute values of the
modulation parameter, however, the reflected beam also experi-
ences an increased reshaping [see Figs. 3(d) and 3(g)], so that a
compromise, when choosing the value of the phase modulation
parameter, must be found among increased lateral shift, large
reflected intensity, and distortion of the beam.
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Finally, Fig. 3 also shows that the general tendency for the
dependence of the lateral shift on the angle of incidence is
that its evolution when θ increases is reversed (although non-
symmetrically with respect to x = 0) upon a sign reversal of the
spatial modulation parameter ξ , as can readily be seen when
comparing Figs. 3(b) and 3(e), Figs. 3(c) and 3(f ), or Figs. 3(d)
and 3(g). However, as should be expected, for incidence angles
around normal incidence (θ = 0), calculations show that the
distribution of the Gaussian beam field is symmetric with
respect to x = 0 for any value of ξ .

Overall, the results shown in Fig. 3 clearly highlight the
marked sensitivity of the lateral shift of the Gaussian beam upon
a spatial modulation of its phase and the way a thoughtful choice
of the parameter governing that modulation provides control of
both the amplitude and sign of the shift.

It must be noted, however, that the lateral GH beam shift
upon reflection is, as mentioned earlier, coupled to an angular
shift, also in the plane of incidence, with respect to the purely
specular direction, for which the central wave vector of the
reflected beam would make the exact same angle θ (in absolute
value) with the normal to the surface as the central wave vector
of the incoming beam. In reality, the reflection of the beam
departs from this simple behavior familiar to ray optics, and
an angular shift 1θ is indeed observed that can, in some cases,
reach several degrees and thus cannot be neglected, as it must
be taken into account for the design of any device exploiting
the measurement of the GH effect for sensing purposes. The
analytical calculations presented in this section do not allow a
simple evaluation of1θ . Estimates based on numerical simula-
tions of the propagation of the reflected beam, however, can be
carried out and are presented and discussed below.

4. NUMERICAL SIMULATION OF THE
PROPAGATION OF THE REFLECTED
PHASE-MODULATED GAUSSIAN BEAM

In this section, we show the results of numerical simulations
of the production of a phase-modulated Gaussian beam and
its propagation after reflection on the dielectric plate. These
simulations were carried out using the COMSOL Multiphysics
solver.

Several routes can be followed to obtain the transverse
spatial phase modulation of the form exp(−iξ x ′2) that
appears in Eq. (1) in addition to the longitudinal phase
term exp(−ik0nS z′) of a conventional Gaussian beam. We
propose here two ways of achieving that goal by focusing
a non-modulated Gaussian beam: (1) with a lens with one
(plano–convex lens) or two (biconvex lens) parabolically shaped
surface profile(s) in the (x ′z′) plane; or (2) with a flat-surfaced
thin lamella exhibiting a parabolic gradient of its refractive index
also acting as a converging lens (see Appendix A for details). In
both cases, the constitutive parameters of the lens were chosen
so that it produces a spatially phase-modulated beam with a
negative modulation parameter (ξ < 0).

Figure 4 shows the results of numerical simulations where a
spatial phase modulation is added to an initially non-modulated
Gaussian beam when it is focused with a symmetrical biconvex
lens whose thickness (in the direction of the z′ axis) follows
a parabolic dependence as a function of x ′ [see Eq. (A4) in

Appendix A]. To properly assess the influence of the resulting
phase modulation, the position of the lens relative to the plate
as well as the waist of the incoming (non-modulated) Gaussian
beam were adapted for each value of the resulting negative
modulation parameter ξ , in such a way that the focused (phase-
modulated) beam keeps the same waist w0 at the upper surface
of the dielectric plate in all cases. Note that the height h of the
lens should be significantly larger than the diameter 2w0 of
the incoming beam to reduce non-paraxial aberrations. Thus,
for each value of ξ , the height of the lens must be adapted in
addition to its curvature.

In practice, lateral beam shift measurements are easier to
realize at relatively small incidence angles. Here we show in
Fig. 4 the reflection of the Gaussian beam simulated for two
values of the incidence angle: θ = 20◦ (top panels) and θ = 25◦

(bottom panels). The first of these values is close to the mini-
mum of reflectivity |<| of the plate, as discussed above, whereas
for the second value, reflection is characterized by both large
values of the lateral shift and large values of |<|. The analytically
calculated profiles of the field modulus at the surface of the plate
for those angles of incidence correspond to the horizontal dotted
and dashed white lines in Fig. 3.

As was predicted by the calculations based on the analytical
model described in Section 3, the Gaussian beam undergoes a
reshaping of its field profile even when its phase is not spatially
modulated [ξ = 0, Figs. 4(a) and 4(e)]. As can be seen in all
panels of Fig. 4, the reflected intensity is split between two
beams as a result of this reshaping, one of which corresponds
to a positive lateral shift 1x (solid arrows) with respect to the
specular direction (dashed arrows), and the other corresponds to
a negative lateral shift1x (dotted arrows). In what follows, these
two beams will be referred to as the first and second reflected
beams, respectively.

At incidence angle θ = 20◦ [Figs. 4(b)–4(d)], these two
beams are of comparable amplitudes for all values of the modu-
lation parameter ξ (with the first reflected beam corresponding
to1x > 0 only slightly brighter), but as mentioned above, the
overall reflected intensity is low, as this incidence angle coincides
with low values of |<|.

For all intents and purposes, the case where incidence angle
θ is equal to 25◦ [Figs. 4(f )–4(h)] is more interesting, since
the detection of beam shifts is bound to be easier in this case
due to the larger values of reflected intensity. At that incidence
angle, the intensities of the two reflected beams greatly differ,
with the first beam (solid arrow, for 1x > 0) much brighter
than the second one (dotted arrow, for1x < 0), and thus more
suitable for potential applications. The position of the center
(defined as the location where intensity is maximum) of the
first reflected beam at the surface of the plate can be numerically
deduced from the simulations, and its comparison with that
of the incoming beam yields the positive value of the lateral
shift 1x it undergoes. Similarly, the direction of propagation
of either first or second reflected beam, obtained through a
numerical determination of its center, can be compared to the
specular direction, which leads to the value of the angular shift
1θ = θr − θ , where θr denotes the absolute value of the angle
between the central propagation axis of a reflected beam and
the normal to the top surface of the plate. The angular shift thus
determined is positive for the first reflected beam, whereas it is
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negative for the less bright second reflected beam—meaning
that θr > θ and1θ > 0 for the first reflected beam, and θr < θ

and 1θ < 0 for the second one (whereas θr = θ in the case of
specular reflection).

The results of the analytical and numerical determinations
of the normalized lateral spatial shift1x/λ0 of the brighter first
reflected beam are compared in Fig. 5(a) as functions of ξ for
−7≤ ξ ≤ 0 and for θ = 25◦. The error bars are those of the
numerical procedure used for the determination of the reflected
beam center at the upper surface of the plate (z= 0), with an
uncertainty related to the reshaping of that beam (as shown in
Fig. 3). The values of1x obtained with both approaches are in a
satisfactorily good agreement for all values of ξ considered in
our calculations, and for−3≤ ξ ≤ 0, indicate a steady increase
of the shift (by a factor that can slightly exceed two) when the
absolute value of parameter ξ increases, i.e., when the transverse
modulation of the phase of the incoming Gaussian electric
field increases. For larger values of |ξ | (for−7≤ ξ ≤−3), both
methods seem to indicate a general tendency for1x to decrease
slightly. This can be related to the fact that the reshaping under-
gone by the reflected beam becomes markedly stronger when
the modulation parameter increases in absolute value. Thus,
for effective control of the enhancement of the lateral shift, one
should retain values of the modulation parameter within the
interval −5≤ ξ ≤−1. Overall, our calculations show that the
lateral shift1x can exceed twice the value of the wavelength in

Fig. 5. (a) Comparison of the normalized lateral spatial shift1x/λ0

of the first reflected beam as a function of the phase modulation
parameter ξ (for −7≤ ξ ≤ 0) obtained with the analytical calcula-
tion (orange curve) and with the numerical simulation (green curve).
(b) Angular shift1θ of the first reflected beam for the same set of values
of ξ obtained using the numerical simulation. The incidence angle is
θ = 25◦.

vacuum of the incoming beam, that is, reach values of the order
of 1 cm.

Similarly, Fig. 5(b) represents the variations of the angu-
lar shift 1θ of the first reflected beam for the same incidence
angle θ = 25◦ and over the same range −7≤ ξ ≤ 0 of the
phase modulation parameter. Here again, the error bars stem
from the procedure used for determination of the central axis
of the primary reflected beam. The angular shifts deduced
from the numerical simulations are noticeably enhanced when
the incoming Gaussian beam is phase modulated (by a factor
larger than four when ξ increases from zero to seven in absolute
value) and reach several degrees, which makes them easy to
detect for potential applications of lateral shift measurements.
Note that similar tendencies for lateral and angular shifts can be
obtained for the second, much less intense, reflected beam.

As mentioned earlier, similar results can be obtained when
the spatial modulation of the Gaussian beam is achieved using a
flat-surfaced thin lamella with a spatial gradation of its refractive
index ngr(x ′) obeying a parabolic law along the x ′ axis. For the
case of ξ < 0, the refractive index profile of such a thin lamella
is described by Eq. (A5) in Appendix A. Again, simulations
show a split of the reflected field in two separate beams with
different propagation directions (on either side of the specular
direction), one being markedly more intense than the other.
Figure 6 illustrates this approach with the example of numerical
simulations of beam propagation carried out when the refractive
index at the center of such a focusing lamella is ngr,c = nP and
for ξ =−3. The other parameters are identical to those used
in Figs. 3 and 4. In this case, the refractive index in the lamella
decreases parabolically along the x ′ axis from the center of
the lamella to its extremities, so that ngr(x ′ =±H/2)= 1.5,
where H = 33.4 mm is the total height of the lamella, whose
thickness is chosen as D= 9.2 mm. For this set of structural
parameters, calculations lead to values of the lateral spatial shift
1x of the first (i.e., brighter) reflected beam, estimated as previ-
ously at the surface of the plate coinciding with the (x y ) plane,

Fig. 6. Numerical simulation of the electric field amplitude
distribution (normalized with respect to E0) for spatial phase modu-
lation parameter ξ =−3 and for incidence angles (a) θ = 20◦ and
(b) θ = 25◦ in the case where the phase of the incident Gaussian beam
is spatially modulated with the help of a focusing thin lamella with a
parabolic refractive index gradient. The white dashed line denotes the
central axis of the incoming beam and the normal to the surfaces of the
focusing lamella. The white dashed arrow indicates the direction of
specular reflection, and the solid and dotted arrows show the central
axes of the first (brighter) and second reflected beams, respectively. As
in Fig. 4, the color scale for the normalized field amplitude has been
truncated to the [0; 0.5] interval to enhance the readability of the
graphs.
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approximately equal to 2.82 λ0 for incidence angle θ = 20◦

and 2.33 λ0 for θ = 25◦, which is in a good agreement with the
corresponding values estimated with a parabolic lens.

5. CONCLUSION

We have shown theoretically and numerically that a spatial
transverse modulation of the phase of a Gaussian beam provides
a way to control the amplitude and direction of the lateral GH
shift to which the reflected beam is subjected with respect to the
conventional specular reflection geometry of geometrical optics.
We show in Appendix A how, in practice, such a modulation can
be achieved by placing a parabolic lens, or a dielectric lamella
with a parabolic gradient of its refractive index distribution, in
front of a usual Gaussian beam.

Our theoretical analysis and numerical simulations show
that the spatial lateral shift of the reflected beam is of the order
of one wavelength of the incoming non-modulated Gaussian
beam, and that it can be increased up to 2.5 times by introducing
a spatial modulation to the beam. For the chosen waist of the
microwave beam used for calculations, this translates into an
exaltation of the spatial shift from 2.9 to 7.3 mm, which would
facilitate its detection in the context of practical applications.

Our numerical simulations of beam propagation indicate
that the angular shift that typically accompanies the lateral GH
shift in the plane of incidence is also sensitive to the modula-
tion of the phase of the beam. Specifically, we have shown that
the angular shift can be increased more than four times by the
phase modulation of the Gaussian beam and can reach up to 9◦,
which, again, makes the measurement of such a shift easier.

We have established the optimal range [−5,−1] of values of
the dimensionless parameter ξ that governs the spatial phase
modulation for which the lateral shift of the reflected beam is
significantly larger than that of a non-modulated beam, but also
coincides with large values of the reflection coefficient, while the
reshaping of the reflected beam remains limited and thus does
not prevent practical application of beam shift measurements.

Such applications can, for example, be found in the
microwave domain, where our calculations have shown that
the lateral shift of the reflected beam, enhanced and controlled
by a well-chosen phase modulation, can reach up to several mil-
limeters, and its experimental measurement in devices such as
sensitive sensors, routers, or de/multiplexers is thus facilitated.

It should be noted that the conclusions presented here remain
valid for other spectral ranges, for instance, in the visible and
near-infrared domains. However, the required precision of the
techniques used for the detection of spatial and angular beam
shifts in those domains would be higher.

APPENDIX A: OBTAINING A SPATIALLY
PHASE-MODULATED GAUSSIAN BEAM

We discuss here two ways of achieving a transverse spatial phase
modulation of the electric field of a Gaussian beam of the form
exp(−iξ x ′2/w2

0), as indicated in Eq. (1).
The first way consists of focusing a conventional (i.e., without

phase modulation) Gaussian beam with a non-spherical lens
tailored to yield the required phase modulation. Let us consider
such a lens, made of a transparent material with refractive index

Fig. 7. Schematic of (a) biconvex lens and (b) plano–convex lens
with a parabolic thickness profile, height h , and refractive index nL

surrounded by a medium with refractive index nS . Note that the actual
origin of the (x ′ y ′z′) Cartesian system of axes is the same as in Fig. 1.

nL and immersed in a homogeneous medium with refractive
index nS (with nS < nL , which is the case when the surrounding
medium is vacuum or air). Its optical axis coincides with the
z′ axis (central axis of the incoming beam; see Fig. 1), i.e., the
incoming conventional Gaussian beam is incident along
the optical axis of the lens. The lens is located close to the waist
of the beam, and can thus be considered collimated and its wave-
front a plane across the lens, provided the latter’s thickness is at
all points much smaller than the Rayleigh length z′R of the beam.

Let us first consider the case of a symmetrical biconvex lens
[Fig. 7(a)], introduce the function ρbc (x ′) describing the lens
thickness profile, and denote ρbc 0 = 2ρbc(0) its total thickness
on the optical axis. In the paraxial approximation, the additional
transverse spatial phase modulation introduced by the lens
verifies

ξ

w2
0

x ′2 + 2mπ = 2k0(nL − nS)ρbc(x ′), m ∈Z. (A1)

As a result, the dependence of ρbc on the distance x ′ from the
optical axis is thus parabolic (for −h/2≤ x ′ ≤ h/2, where h is
the height of the lens), with

ρbc

(
x ′
)
=
ξ x ′2 + 2mπw2

0

4π(nL − nS)w
2
0

λ0 =
λ0

4π(nL − nS)w
2
0

ξ x ′2 +
ρbc 0

2
.

(A2)
For ξ < 0, the lens is at its thickest at its center, and it is thus

converging. The numerical simulations discussed in Section 4
(Figs. 4 and 5) were carried out for such a symmetrical bicon-
vex lens, made of the same fused quartz as the dielectric plate
(nL = nP ) and surrounded with air (nS = 1) as well.

Of course, other types of converging lenses can be considered
to obtain the required phase modulation, for instance, a plano–
convex lens [Fig. 7(b)]. Now the lens profile function, denoted
ρpc(x ′), verifies, in the paraxial approximation,

ξ

w2
0

x ′2 + 2mπ = k0(nL − nS)ρpc(x ′), m ∈Z, (A3)
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Fig. 8. Schematic of a flat dielectric lamella [thickness D, height
H, and parabolic gradient ngr(x ′) of its refractive index] acting as a
converging lens and surrounded by a medium with refractive index
nS . The color variations inside the lamella schematically illustrate the
change in the refractive index along the x ′ axis.

which, for−h/2≤ x ′ ≤ h/2, yields

ρpc
(
x ′
)
=
ξ x ′2 + 2mπw2

0

2π(nL − nS)w
2
0

λ0 =
λ0

2π(nL − nS)w
2
0

ξ x ′2 + ρpc 0,

(A4)
where ρpc(0)= ρpc 0 is the thickness of the lens on its optical
axis. Again, for ξ < 0, the lens is converging.

Yet another way to achieve the desired spatial modulation of
the phase of the incident Gaussian beam is to use a flat dielec-
tric lamella whose refractive index ngr exhibits a parabolic
gradient in the direction x ′ perpendicular to the beam propaga-
tion direction z′ (Fig. 8). It is assumed that the local refractive
index ngr(x ′) exceeds the ambient refractive index nS for all
x ′ ∈ [ − H/2, H/2], where H, the height of the lamella, must
be larger than the diameter 2 w0 of the incoming Gaussian
beam.

To induce the desired parabolic phase term in Eq. (1), ngr(x ′)
must vary as

ngr
(
x ′
)
= ngr,c +

λ0

2πw2
0 D
ξ x ′2, (A5)

where D is the thickness of the lamella, and ngr,c is its refractive
index at x ′ = 0. The minimal size of such a graded flat lens
along of the x ′ axis is dependent on the width of the incident
Gaussian beam. As can be seen from Eq. (A5), the rate of change
(ngr(x ′)− ngr,c )/x ′2 of the local refractive index along the
transverse dimension of the lamella is determined by both the
beam parameters (λ0,w0, ξ ) and the lamella thickness D.

For ξ < 0 the local refractive index decreases with the distance
|x ′| from the plane x ′ = 0, which is the plane of symmetry of the
lamella. The calculations shown and discussed in Section 4 (see
Fig. 6) were made for ngr,c = nP = 1.95, ngr (±H/2)= 1.5,
H = 33.4 mm, and D= 9.2 mm.

Such a graded-index flat lens can be obtained for different
spectral ranges by using additive manufacturing technologies
(3D printing), resulting in the fabrication of a composite mate-
rial, or of a perforated gradient index lamella that provides the
required refractive index gradient [50–54].
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