
October 30, 2020 17:33 Optomagnonic Structures - 9in x 6in b4009-ch02 2nd Reading page 79

c© 2021 World Scientific Publishing Company

https://doi.org/10.11820/xxxxxxxxxxxxx 0002

Chapter 2

Magnonics and Confinement of Light in
Photonic–Magnonic Crystals

Jaros�law W. K�los∗,∗∗, Igor L. Lyubchanskii†,‡, Maciej Krawczyk∗,
Pawe�l Gruszecki∗, Szymon Mieszczak∗, Justyna Rych�ly∗,§,
Yuliya S. Dadoenkova¶,‖, and Nataliya N. Dadoenkova‖

∗Faculty of Physics, Adam Mickiewicz University
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We discuss the spin-wave confinement in the magnetic components
of magnetophotonic structures. In the initial sections of the chapter,
we describe the principles of magnetization dynamics, including
both the exchange and dipolar interactions. We showed that
the spin-wave spectrum in confined geometry is determined not
only by the spatial constraints but is also strongly influenced
by non-local demagnetizing effects. In addition, we analyze the
localization of light in the regions of spin-wave confinement, which
can strengthen the magneto–optical interaction. Such enhancement
can be potentially realized in photonic–magnonic crystals, where
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the light localization in magnetic components of the structure
results from the periodicity and the spin waves co-exist with elec-
tromagnetic waves. The final sections are devoted to the Faraday
effect and Goos–Hänchen effect in photonic–magnonic crystals.

1. Introduction

Magnetic moments can rotate in the precessional motion around the

direction of the static magnetic field if they are pushed out of the

equilibrium orientation (e.g., by the application of a radio frequency

electromagnetic field). Due to the interactions in a magnetic medium,

the waves of coherently precessing magnetic moments can propagate

over large distances, as compared to their wavelength. These waves

(called spin waves1–4) can transmit energy and information, similarly,

like other kinds of waves (e.g., electromagnetic waves5). Typical

frequencies of spin waves (in the range from a fraction of GHz to

hundreds of GHz) and their wavelengths (in the range from hundreds

to tens of nanometers, respectively) make possible the design of

miniaturized devices (called magnonic devices) operating on high-

frequency signals at nanometer scale.6, 7

The spin waves are confined in the volume of the magnetic body.

The static magnetic configuration and the dynamics of magnetic

moments are governed by the magnetic interactions which act both

in long- and short-range. Due to the long-range character of magnetic

interactions, the magnetization dynamics depends on the geometry

of the system. The confinement of spin waves in magnetic structures

results not only in the quantization of the waves in constrained

dimensions but also determines the dipolar interactions.8, 9

The frequencies of spin waves correspond to the frequencies of

microwaves. Therefore the direct coupling between spin waves and

electromagnetic waves (microwaves) is possible. It is also feasible

to observe the inelastic scattering of light of optical frequency

on the spin waves in the process called Brillouin light scattering

(BLS).10 The high frequencies of optical electromagnetic waves also

allow for scoping static magnetic configuration and the dynamics

of magnetization by Kerr or Faraday11 effect where the (temporal)

changes of polarization of the reflected or transmitted light give the

information about the statics (dynamics) of magnetization.12
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For all of these effects, the interaction between spin waves and

electromagnetic waves strongly depends on the localization of both

kinds of waves. The interaction can be significantly enhanced when

the spin waves and electromagnetic waves are spatially confined in

the same area.

To effectively mold the propagation and localization of spin waves

or electromagnetic waves, we can use the artificial periodic structures

called magnonic crystals6, 13 and photonic crystals,14 respectively.

The spectra of wave eigenmodes in these structures are split into

the frequency ranges forbidden (frequency band gaps) and allowed

for propagating waves (frequency bands). The photonic crystals

containing magnetic materials (magnetophotonic crystals) are the

subject of intensive studies15–17 because they allow exploring the

chiral magneto–optical effects for electromagnetic waves. However,

they are not structurally optimized to support the existence of spin

waves. In order to play with the interaction of spin waves and

electromagnetic waves in periodic structures, we need the particular

kind of artificial crystal, named as photonic–magnonic crystal.18–20

In photonic–magnonic crystals, we use the photonic band gaps to

localize the electromagnetic waves in periodically placed magnetic

layers, playing the role of artificial defects. In such conditions, both

the magneto–optical effects (as it was shown for BLS, Faraday21 and

Goos–Hänchen22 effects) and the interaction (between localized spin

waves and electromagnetic waves) can be strengthened.23–25

1.1. Landau–Lifshitz equation

The dynamics of the magnetic moment M(t) can be classically

described by Landau–Lifshitz equation1, 26, 27:

dM(t)

dt
= γμ0M(t) ×Heff(t), (1)

where Heff is an effective field. The effective field includes both the

external field H0, produced by electric currents, and the internal

field Hint, resulting from the interactions with the other magnetic

moments. The coefficient γ is called gyro-magnetic ratio and relates

the magnetic moments to the angular momentum: γ = M/J.
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For negatively charged particles (e.g., for electron) the angular

momentum (spin) is oriented in opposite direction to magnetic

moment and therefore their gyro-magnetic ratio is negative. Equation

(1) can be classically derived from the equation of motion for angular

momentum:

dJ

dt
= T , (2)

where the torque T has magnetic origin: T = M × Beff = μ0M ×
Heff . The Landau–Lifshitz equation (1) describes dynamics which

conserves the length of the magnetic moment vector. It can be

easily noticed after calculations of scalar product of both sides of

the equation (1) with M(t) which gives the relation: ∂|M(t)|2/∂t =

0 =⇒ |M(t)|=const.

For continuous medium the equation can be written in the local

form, where the magnetization vector M, as a magnetic moment M
per unit of volume v (M = dM/dv), is introduced:

∂M(r, t)

∂t
= γ(r)μ0M(r, t) ×Heff(r, t)︸ ︷︷ ︸

T(r,t)

, (3)

where T is a torque per unite volume of the magnetic material.

The internal components of effective field are determined by the

spatial distribution and temporal changes of magnetization vector:

Hint(r, t) = Hint(M(r, t)). This feature makes Eq. (3) nonlinear in

the general case. Therefore, the Landau–Lifshitz equation describes

the variety of dynamical effect including both the nonlinear and lin-

ear phenomena, e.g., magnetization switching, domain wall motion,

and dynamics, vortex dynamics and spin-wave propagation.

The magnetization in the solids results primarily from the

presence of magnetic moments of electronic spins. Therefore in

further consideration we assume that γ(r) < 0.

1.2. Linear approximation

Let us consider the magnetization vector oriented at the oblique

direction in an effective magnetic field. According to Eq. (3), the
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torque T = μ0M×Heff is orthogonal to the direction of magnetiza-

tion and to the direction of effective field. When the effective field is

static, then the magnetization precesses around the direction of the

effective field n̂, as it is shown in Fig. 1. (It is worth noting that for

Fig. 1. The precession of magnetization vector around the static component of
the effective field for γ < 0. The dynamic magnetization m can be presented as a
sum of two orthogonal components: m1 and m2. The torque: T = μ0 (M×Heff)
keeps the head of magnetization vector on elliptical path in the absence of
dumping.

Fig. 2. The precession of magnetization vector around the direction of the
effective field in the presence of Landau damping. The damping torque: Td =
λ μ0

Ms
M × (M×Heff ) aligns gradually the magnetization vector to the direction

of effective field. Similarly like in Fig. 1, we presented the case for γ < 0.
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γ < 0 the direction of precession is the same as the direction of the

effective field: ω = ωn̂).

When the angle of the precession cone is small, then Eq. (3) can

be linearized. Firstly, we are justified to assume that the component

of magnetization along the direction of the effective field is static and

its length is approximately equal to the saturation magnetization

MS . Then, we can consider the component of magnetization orthog-

onal to the effective field as a small and oscillating harmonically in

time:

M(r, t) = MS(r)n̂(r) + m(r)eiωt, (4)

where m · n̂ = 0. The unit vector n̂(r) describes the static magnetic

configuration which is not co-linear in general. The positive value

of ω in the exponent eiωt corresponds to the negative value of γ.

The vector m (of small magnitude |m| � MS) can be expressed

by two orthogonal complex components: m1 and m2. The difference

between the arguments of m1 and m2 is a phase difference between

the oscillation of magnetization in two orthogonal direction during

the precessional motion (e.g., for fully circular precession |Arg(m1)−
Arg(m2)| = π/2). The same shift of the arguments for both

components (m1 → m1e
iϕ0 , m2 → m2e

iϕ0) is irrelevant from physical

point of view and can be interpreted as selection of a initial time for

the observation of precessional motion: φ0 = ϕ0/ω. The effective field

can be represented similarly by splitting into the static part and small

dynamic part, which oscillates harmonically in time

Heff(r, t) = Heff(r)n̂(r) + h(r)eiωt. (5)

We limited our considerations to the case when the external field has

only static component H0 and does not contribute to the dynamic

part of effective field. The dynamic field h(r)eiωt results only from

dynamic interactions within the magnetic system and is (mutually)

related only to the spatial distribution of dynamic component of

magnetization m(r). It means that h is not able to change the static

configuration n̂(r).

Taking into account the assumptions discussed above, we can

obtain the following form of linearized Landau–Lifshitz equation for

YongQi
Highlight
t_0
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γ < 0:

iωm(r) = |γ|μ0 (Heff(r)m(r) −MS(r)h(r)) × n̂(r), (6)

where we neglected the weak spatial dependence of γ(r). In Eq. (6),

we omitted the product: h(r)eiωt × m(r)eiωt ∝ ei2ωt which is

nonlinear.

The linearized spin-wave dynamics has a form of precessional

motion of magnetization vector around the direction of the effective

field where only the harmonic dynamics in the direction perpendicu-

lar to a static effective field is considered. Equation (6) allows to find

the spatial distribution of the complex amplitude m(r) of dynamical

comment of magnetization at a given frequency ω.

It is worth noting that the reverse of direction of static effective

field: n̂ → −n̂ leads to the reversal of the precession direction:

ω → −ω for the same spatial distribution of the dynamic magne-

tization m(r).

1.3. Magnetic damping

The energy of spin waves is dissipated directly or indirectly to the lat-

tice vibrations (heat) or, in a smaller extent, to the electromagnetic

radiation. Regardless of the microscopic mechanism, the spin-wave

damping can be described by the introduction of additional torque

Td (see Fig. 2) to the Landau–Lifshitz equation which drags the

magnetization vector towards the direction of the effective field. One

possible formulation of the damping term was proposed by Landau:

∂M

∂t
= γ μ0(M×Heff)︸ ︷︷ ︸

T

+γ
λ

MS

⎛
⎝M×

T︷ ︸︸ ︷
μ0(M×Heff)

⎞
⎠

︸ ︷︷ ︸
Td,L

. (7)

The alternative form of damping torque was formulated by Gilbert28:

∂M

∂t
= γ μ0(M×Heff)︸ ︷︷ ︸

T

+γ
α

MS

(
M× 1

γ

∂M

∂t

)
︸ ︷︷ ︸

Td,G

. (8)



October 30, 2020 17:33 Optomagnonic Structures - 9in x 6in b4009-ch02 2nd Reading page 86

86 J. W. K�los et al.

The dimensionless parameters λ and α denote the strength of the

torque’s damping for Landau formulation (Td = Td,L) or Gilbert

(Td = Td,G). For small damping (Td � T) the difference: 1
γ
∂M
∂t −T

is small and both formulations of damping torques are practically

equivalent. In the regime of small damping the parameters α and λ

take practically the same values. For large damping both descriptions

are not equivalent. The formulation of damping torque proposed by

Gilbert agrees better with experimental results. In order to force

the Landau formulation to be exactly equivalent to those proposed

by Gilbert we have to replace λ by α/(1 + α2) and renormalize the

gyromagnetic factor: γ → γG = γ/(1 + α2). For both formulations

of damping torque, the length of magnetization vector |M(t)| is

conserved.

The linearized versions of Eqs.(7) and (8) can be written in the

following forms for γ < 0:

iωm = |γ|μ0 [Heff (m× n̂ + λm) −MS (h× n̂ + λh)] (9)

and

iω(m + αm× n̂) = |γ|μ0 (Heffm−MSh) × n̂, (10)

where m(r) and h(r) are the complex amplitudes of dynamic

magnetization and dynamic effective field.

2. Magnetic interactions

The magnetic interactions determine both the static magnetic con-

figuration and the coupling between precessing magnetic moments

(see Fig. 3). In the magnetic system, we can distinguish two types

of interactions: exchange interaction — a short-range of quantum

origin and dipolar interaction — a long-range of classical origin.

The interplay between the exchange and dipolar interactions is

responsible for many unique features of magnonic systems, e.g.,

complexity and tunability of the magnetic configurations or the

lack of the scalability of the spin-wave spectrum with the change

of the size of the system. The properties of magnonic systems

change significantly with their sizes. The interactions, governing the
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Fig. 3. The interplay between dipolar and exchange interactions. (a) The
magnetic domains are oriented anti-parallel which minimize magnetostatic energy.
However, at short distances, inside the domains, the exchange interactions prevail,
which forces the parallel alignment of the magnetic moment in ferromagnetic
material. (b) The in-phase or out-of-phase procession of two magnetic moments
A and B is preferred in dependence on the distance RAB between them. The
static components of magnetic moments are colinear.

dynamics of magnetization, gradually transit from exchange to a

dipolar character when the sizes of the system are expanding from

nanometer to micrometer range.

The magnetic interactions are incorporated into the Landau–

Lifshitz equation (1) by introducing the spatial- and time-dependent

components of the effective magnetic field. The effective field acting

on the magnetization at a particular location reflects the impact of

all magnetic interactions from the surrounding of selected locations.

In this section, we discuss the origin of the terms of effective field

describing the exchange and dipolar interaction.

2.1. Exchange interactions

The origin of spontaneous magnetization in ferromagnets lies in

the parallel alignment of the spin of electrons on lattice sites, and

more precisely since electrons are fermions, the Pauli exclusion

principle governs the ferromagnetism. This fundamental law says

that any two fermions cannot occupy the same quantum state,

including degrees of freedom related to the spin. Although the

electrons interact electrostatically, the dominant interaction at short
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ranges results from the Pauli exclusion principle, which prefers

the parallel alignment of electronic spins in ferromagnetic material.

Therefore, the exchange interaction between two electrons can be

modeled by the Hamitolnian expressed only by electronic spins29, 30:

Hex,i,j = −Ji,jSi ·Sj. The parameter Ji,j , called exchange integral, is

independent on spin degrees of freedom and expresses the overlap of

the electron wave functions located at site i and j. The dimensionless

spins: Si, Sj are related to the angular momenta: �Si, �Sj and the

magnetic moments γ�Si, γ�Sj . The gyromagnetic ratio γ = gμB/�

is expressed by the constants: g-factor and Bohr magneton μB. In

a ferromagnet, the exchange interaction is attractive for parallel

alignment of spins. Therefore, the exchange integral is positive

(Ji,j > 0). For the atomic lattice of interacting spins we got, so-

called, Heisenberg hamiltonian: Hex = −1
2

∑
ij Ji,jSi · Sj , where the

summation takes place over pairs of nearest neighbors (NN), due to

short range of the exchange interaction.

In the classical limit, the exchange energy of selected (macro)spin

Si is given formally by the same formula as in quantum limit

Hex,i = −
∑
j

(NN of i)

Ji,jSi · Sj. (11)

The vectors Si, Sj can be oriented arbitrary in space, without the

constraints describing the quantization of the angular momentum.

Equation (11) is our starting point to formulate the exchange field

in the form considered in the classical theory of spin-wave dynamics.

To proceed further, we need to put three assumptions:

• the exchange interaction is isotropic (Ji,j = J for any pair of NN),

• the angle between Si and Sj is small,

• the spatial distribution of the magnetic moments (γ�Si, γ�Sj) can

be described by continuous function, namely magnetization vector:

M(r).

The above assumptions allow incorporating the exchange interaction

to the classical model of magnetization dynamics in a continuous

medium, where the Landau–Lifshitz equation can be used to describe
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the precession of magnetization vector. We can then express the

exchange energy as a continuous function of the position r (of the

ith magnetic moment) and expand the magnetization into Taylor

series to describe the small spatial changes of the orientation of the

magnetization vector. Detailed discussion is presented in Ref. [31].

Taking into account all these facts, we can derive the energy density

of exchange interaction in the form:

εex = λM2
S +

A

M2
S

∑
i

(∂xiM )2 . (12)

The parameter A is called exchange stiffness constant and can be

related to exchange integral: A = JS2n
a (for cubic lattices), where

S = |S1| = |S2|, a is the lattice constant and N = n/a3 is a

number of spins/atoms per unit cell. The saturation magnetization

can also be related to microscopic parameters: MS = NμBgS. In

the continuous model, the material parameters can be, in general,

spatially dependent: MS(r), A(r). The parameter λ = − ZJ
Nμ2

Bg
2

(where Z is the number of NN for the selected spin) describes the

static term which can be neglected for the derivation of the exchange

field.31

In general, the effective field can be calculated by functional

differentiation of energy density εeff(M, ∂xiM) with respect to the

magnetization vector2

Heff = − 1

μ0

δεeff
δM

= − 1

μ0

(
∂εeff
∂M

−
∑
i

∂xi

∂εeff
∂(∂xiM)

)
. (13)

Here, by calculating the functional derivative of the exchange energy

density (12) εeff(M, ∂xiM) with respect to the magnetization vector,

we obtain the following formula for the corresponding contribution

to the effective field:

Hex =
1

μ0
∇
(

2A

M2
S

)
∇M. (14)

For uniformly magnetized sample, the static component of exchange

field is equal to zero, and the exchange field is expressed only by the
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dynamic part, which for the spin-wave of the frequency ω is:

Hex(r, t) = hex(r)eiωt =
1

μ0
∇
(

2A

M2
S

)
∇m(r) eiωt. (15)

It is worth noting that the x, y, z components of the magnetic field

in Eqs. (13)–(15) are obtained for the corresponding components of

magnetization substituted on the right-hand sides of these equations.

2.2. Dipolar interactions

The dipolar interaction can be described using the principles of

classical electromagnetism. The energy of dipolar interaction between

the pair of spins can be described by the formula derived on the

ground of magnetostatics5 :

Hms,i,j = μ0
(gμB)2

4π

(
Si · Sj

r3i,j
− 3

(Si · ri,j) (Sj · ri,j)
r5i,j

)
, (16)

where ri,j is a vector connecting Si and Sj . In order to calculate the

dipolar energy of ith spin in the magnetic system, we need to sum

up the contributions from all remaining spins in the system which

means the interaction on the long-range:

Hms,i =
∑
j

(j �=i)

Hms,i,j. (17)

It is worth to note that the sum (17) will depend on the shape

of the magnetic body (this can be easily checked for uniformly

magnetized sample (Sj = const.). It results from the anisotropy of

the dipolar interactions (16) which can be repulsive (ri,j ⊥ Si,Sj) or

attractive (ri,j ‖ Si,Sj), depending on the relative position ri,j and

orientation inside the magnetic body. The formula (16) is also valid

for precessing magnetic moments because the retardation effects are

weak for the GHz dynamic in micro- and nanoscale. The magnetic

dipolar energy and demagnetizing field are practically independent

on electric currents and electric fields weakly induced by precessing

magnetization. The lack of the feedback from a magnetic field to
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an electric field in magnonics means that the electric currents and

electric fields can be the sources of the external magnetic field

only because they are not involved in the mediation of interactions

between magnetic moments.

The derivation of the components of the effective field resulting

from the presence of dipolar interaction is quite straightforward in

a continuous model, where we consider the spatial distribution of

magnetization. In the magnetostatic approximation, the Maxwell

equation for the rotation of magnetic field H reduces to: ∇×H = 0.

For such field, called magnetostatic field Hms, we can introduce the

scalar potential Φ1,4:

Hms = −∇Φ, (18)

called magnetostatic potential. From the other Maxwell equation

(Gauss equation for magnetism: ∇ · B = 0) we obtain the Poisson

equation or the Laplace equation for magnetostatic potential inside

Φin or outside Φout the magnetic material, respectively:

ΔΦin = ∇ ·M,

ΔΦout = 0.
(19)

The requirement of the continuity of the normal component of the

B-field and the tangential component of the H-field on the inter-

face leads to the following boundary conditions for magnetostatic

potential:

Φin = Φout,

∂Φin

∂n̂0
− ∂Φout

∂n̂0
= M · n̂0,

(20)

where n̂0 is the unit vector normal to the interface. The magneto-

static potential must be also regular at infinity.32 It means that both

|rΦ| and |r2Φ| must be limited for r → ∞.
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The general solution of Eqs. (19) has a form:

Φ(r) = − 1

4π

∫
V

∇′ ·M(r′)
|r− r′| dV ′ +

1

4π

∮
S

n̂′
0 ·M(r′)
|r− r′| dS′. (21)

The first term in (21) describes the contribution of the volume mag-

netic charges which appear in non-collinear magnetic configurations

where ∇·M(r) 
= 0 (it vanishes at strong external field H0 where the

magnetization is saturated). The second term in (21) is related to the

presence of surface magnetic charges induced on the interfaces where

the normal component of magnetization is discontinuous. It refers

also to the surfaces of magnetic body separating magnetic (M 
= 0)

and nonmagnetic medium (M = 0).

In the linear approximation, the demagnetizing field Hms(r, t) =

Hms(r)+hms(r)eiωt can be calculated from the spatial distribution of

magnetization considered independently for static M(r) and dynamic

m(r, t) components, behind the source of the static and dynamic

demagnetizing fields, respectively.

The dipolar interactions are non-local and depend on the geomet-

rical factors: shape and sizes of the magnetic structure. However, the

static magnetic configuration is determined not only by the geometry

of a magnetic body but also by the external magnetic field. Therefore,

the interplay between the geometry and applied field is responsible

for forming the static magnetic landscape in which the magnetic

interactions couples the precessing magnetic moments. It is worth

to note that (dynamic) dipolar interactions between the precessing

magnetic moments are also long-range and anisotropic because

the dynamic demagnetizing field depends globally on the shape

of magnetic sample and the orientation of the external magnetic

field.

2.2.1. Demagnetizing effects in ellipsoidal body

The static demagnetizing field inside the uniformly magnetized

magnetic body of an ellipsoidal shape is uniform.1, 33 Therefore, for

magnetic samples in the shape of an ellipsoid (which can be reduced

to the sphere, infinitely long cylinder or infinitely extended layer,
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for specific values of semi-axes), the relation between demagnetizing

field and the magnetization is particularly simple:

Hms = −N ·M, (22)

where N is a so-called demagnetizing tensor. The demagnetizing

tensor is symmetric and can be reduced to diagonal tensor when

defined in the Cartesian coordinate system with the x, y, z-axis being

co-linear with the principal axes of the ellipsoid. The relation (22) is

also valid for dynamic field and dynamic magnetization for spatially

uniform magnetization precession.

For sphere, cylindrical rod (aligned along the x-direction), and

layer (perpendicular to the x-direction) the non-zero (i.e., diagonal)

coefficients of demagnetizing tensor take values: Nx = Ny = Nz = 1
3

(sphere), Ny = Nz = 1
2 (cylindrical rod), Nx = 1 (layer). It is worth

to note, that the trace of demagnetizing tensor is equal to one33:

Nx +Ny +Nz = 1.

For magnetic bodies of the non-ellipsoidal shape, the demag-

netizing tensor can be generalised when we assume its spatial

dependence34 Hms(r) = −N (r) · M(r) which is consistent with the

general approach presented in Eqs. (18)–(21).

3. Spin waves in confined geometries

The spin waves were postulated in 1930s by Felix Bloch35 in

order to include the magnetic contribution to the specific heat

in macroscopic samples. He showed that the magnetization of a

Heisenberg ferromagnet29 at low temperature should deviate from its

zero-temperature value with a T
3
2 dependence without any external

magnetic field applied. This quantum mechanical theory of spin was

developed in 1940s using the formalism of the second quantization

by Holstein and Primakoff.36 However, the semiclassical theory of

spin waves was initiated even earlier in the mid-1930s, by Heller

and Kramers.37 In this approach, based on classical Landau–Lifshitz

equation, the spin wave can be understood as a coherent precession

of magnetization in magnetic body, where the differences in phase

of precession are acquired gradually with the distance — see Fig. 4.
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Fig. 4. The harmonic spin-wave visualized as a sequence of precessing magnetic
moments. Due to the interactions between the magnetic moments, they can
precess coherently, i.e., with the phase difference fixed in time. The phase
difference increases with the distance between the magnetic moments. As a result,
magnetic moments oscillate in space, forming the spin-wave.

This collective phenomenon is a classical wave, where we observe the

oscillation of dynamic components of magnetization both in time

(with the precession frequency ω) and space (with wave vector k).

The semiclassical approach appeared to be very effective in the

description of spin waves also in confined geometry of nanostructures

where the characteristic sizes are in the range of hundreds of nanome-

tres or single micrometers. Due to the long-range and anisotropic

character of the dipolar interaction, the properties of spin waves can

be shaped by the geometrical factors. The pioneer works concerning

the dipolar dominated spin waves in confined geometries of magnetic

sphere38 and layer39 appeared at the turn of the 1950s and 1960s. The

significant increase of the activity on the subject of dipolar-exchange

spin waves in confined geometries is observed from the beginning

of this century and is related to the development in the fabrication

techniques and the progress in numerical simulations. That time,
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the term of magnonics has been accepted for this new field of

research.

3.1. Uniform oscillations of magnetization

For the uniform precession of the magnetization in magnetic body

of ellipsoidal shape, we can use the demagnetizing tensor to describe

both the static and dynamic demagnetizing fields. The corresponding

components of the effective field, in the absence of external dynamic

field and with exchange interaction neglected, will read

Heff n̂ = H0 −MS N · n̂,
ĥ = −N ·m.

(23)

The static external field H0 is not co-linear with the static magnetiza-

tion MSn̂ due to the presence of static demagnetizing field −MSN ·n̂.

The static magnetization MSn̂ is aligned along the direction of static

component of effective field Heff n̂ which is ensured by canceling the

torque T = n̂MS × (H0 − MS N · n̂) = 0. It means, that all the

components of the external field perpendicular to the direction of

effective field n̂ are canceled by demagnetizing field.

The linearized Landau–Lifshitz equation can be then written in

the following form:

iωm = |γ|μ0
[((

H0 · n̂−MS(N · n̂
)
· n̂
)
m +MS(N ·m)

]
× n̂,

(24)

which can be expanded into set of the equations for the components

m1 and m2 of the dynamic magnetization m = [m1,m2, 0]:

− (ωH + ωMN11)m1 + (iω + ωMN12)m2 = 0,

(iω + ωMN21)m1 + (ωH + ωMN22)m2 = 0.
(25)

The symbols: ωM = |γ|μ0MS and ωH = |γ|μ0(H0 · n̂ − MSNnn)

denotes the values of the magnetization saturation MS and the

static component of effective field expressed in the unit of magnetic

field (the index n denotes the direction of static magnetization).

Equations (25) form the homogeneous set for m1 and m2, for which
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the determinant should be equal to zero to get nontrivial solutions.

This condition gives the equation for the eigenfrequencies of spin-

wave processions

ω =
√

(ωH + ωMN11)(ωH + ωMN22) − ω2
MN12, (26)

where we use the symmetry of demagnetizing tensor: N12 = N21.

If the external field is applied along one of the principal axes of

the ellipsoid, then in the Cartesian coordinate system with the z-

axis oriented in n̂ direction, Eq. (25) reduces to formula derived by

Kittel40

ω = |γ|μ0
√(

H0 + (Nx −Nz)MS)(H0 + (Ny −Nz)MS)
)
. (27)

The Kittel equation can take the following form for selected cases:

ω = |γ|μ0H0 for sphere,

ω = |γ|μ0
(
H0 +

1

2
MS

)
for cylindrical rod: H0 along the rod,

ω = |γ|μ0
√
H0(H0 +MS) for layer: H0 in the plane.

(28)

Due to large wavelength of electromagnetic waves (compared to the

wavelength of spin waves of the same frequency), the absorption

of the radiofrequency field by spin waves is the largest for uniform

precession (for Kittel modes (2)), where the wavelength is infinite.

It results from the fact that the coupling between spin-wave and

electromagnetic wave depends on the spatial overlap of dynamic

magnetization and the dynamic applied field h0:
∫
volumem(r, t) ·

h0(r, t)dr.

3.2. Spin waves

The spin-wave modes are quantized in the dimensions which are

constrained — their wave vectors (wavelength) take the discrete

values along these dimensions, and the frequencies are numbered by

integer indexes. The spin-wave modes in ferromagnetic spheres were

analyzed in details by Walker in late 1950s38 in dipole dominated
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regime. The frequencies ω of the spin-wave eigenmodes in the sphere

are the solution of the equation:

(n+ 1) + ξ0

d
dξ0
Pm
n (ξ0)

Pm
n (ξ0)

+m ν = 0, (29)

where ξ0 = 1/δ + 1 and δ = ωHωM/(ω
2
H − ω2), ν = ωωM/(ω

2
H − ω2).

The functions Pm
n (ξ0) are the associated Legendre polynomials

indexed by positive integer n and the integer ±m = 0, . . . , n. Due

to 3D confinement the spin-wave modes will be indexed by three

integers (n,m, r),41,42 where r − 1 is the number of solutions of

Eq. (29). The index r denotes the number of nodes of spin-wave

mode in radial direction (perpendicular to the direction of static

effective field n̂), whereas the value n − m − 2r is the number of

zeros of the modes in vertical direction (along the direction of static

effective field). The quantization of the modes in azimuthal direction

(number of phase rotation around the n̂) is given by the index m.

The stronger interaction of these modes (called Walker modes) with

electromagnetic waves is observed for the following sets of indexes

(n, n, 0) and (n, n−1, 0), for which the eigenfrequencies have a simple

linear dependence on the applied field:

ω = ωH + ωM
n− 1

2n+ 1
for (n, n, 0),

ω = ωH + ωM
n

2n+ 1
for (n, n− 1, 0).

(30)

Let us consider the geometry of a ferromagnetic film — a basic

structure which can be used to build the magnonic (or photonic-

magnonic) crystals by periodic repetition. In this geometry, the

spin waves are confined in one dimension only. Therefore, their

eigenfrequencies and the profiles of eigenmodes will be indexed by

one integer n (describing the quantization in out-of-plane direction —

counting the number of nods) and continuous parameter — 2D wave

vector k (describing the propagation in in-plane directions). The

strongest coupling with uniform external microwave film is observed

for the spatially uniform modes of the eigenfrequencies given by the

Kittel equation (27): ω =
√
ωH(ωH + ωM sin2 θ), where θ is the angle
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between the normal to the layer n̂0 and the direction of static effective

field n̂.

For non-zero wave vector k > 0, the general formula for

eigenfrequency of spin wave modes propagating in the thin layer was

derived by Kalinikos and Slavin3, 43, 44:

ω =
√
ωH,n (ωH,n + ωMFn(θ, ϕ, kd)), (31)

where

Fn(θ, ϕ, κ) = Pn(κ) + sin2 θ

×
[
1 − Pn(κ)

(
1 + cos2 ϕ

)
+

ωM

ωH,n
Pn(κ)

(
1 − Pn(κ)

)
sin2 ϕ

]
.

(32)

The symbol ϕ denotes the angle between the direction of the wave

vector k in the plane of the film and the projection of the external

magnetic field on these plane. The parameter κ = kd is the

dimensionless length of the vector k multiplied by the thickness of

the film d.

In the absence of surface anisotropy, there is no additional

torque acting on precessing magnetization vector on both surfaces

of the film, and their dynamic components are completely unpinned

there: ∇m(r) · n̂0 = 0. For such boundary condition, the spin-

wave is quantized inside the film with the wavelength λn = 2π
n d.

Therefore, we introduce the dimensionless parameters κn = nπ, being

of a quantized, out-of-plane component of the wave vector nπ/d,

multiplied by the thickness of the layer d.

The dispersion relation (31) and (32) includes the exchange

interaction incorporated as an additional term to ωH: ωH,n = ωH +

|γ| 2A
MSd2

(κ2 + κ2n), which can be recognized as the exchange dynamic

field |γ|μ0hex(r) expressed in the units of frequency ω. It can be

derived from the definition of dynamic exchange field (13) for the

spin-wave in the form of plane wave (in the in-plane direction) and

unpinned standing waves (in the out-of-plane direction): m(r) =

m ei(k·r‖+
nπ
d
x⊥), where r‖ and x⊥ are the in-plane and out-of-plane

components of position vector: r = r‖ + x⊥n̂0.
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The function Pn(κ) includes the impact of the dipolar interac-

tions resulting from the finite wavelength. It ranges from 0 to 1,

depending on the values of both components of the wave vector. For

the modes which are uniform across the film (n = 0), this function

takes the particularly simple form:

P0(κ) = 1 − 1 − e−κ

κ
, (33)

which is equal to zero for κ → 0 and reduces Eq. (31) to the

formula for ferromagnetic resonance frequency (FMR) frequency. The

formulas describing Pn(κ) for higher modes (n > 0), and taking into

account the arbitrary spin-wave pinning on the surfaces of the film,

can be found in Ref. [44].

Equation (31) has a form of wave dispersion relation ω(k) which

is a fundamental characteristic describing the propagation of waves.

The spin-wave group velocity vgr = ∇kω is the measure of the

strength of the dynamic interactions between the precessing magnetic

moments. The large values of vgr means that even small phase

difference between precessing magnetic moments (or the small change

of wave vector) is not indifferent to the system, and is reflected in

the significant change of the eigenfrequency of the mode.

The dipolar interactions are anisotropic which is manifested in

Eq. (31) by the dependence of the frequency of the spin waves on the

orientation of the wave vector, described by the angle ϕ. For in-plane

oriented static magnetization (θ = π/2), we observe the distinctive

difference between two configurations: ϕ = 0 (when k is parallel to

the static magnetization) and ϕ = π/2 (when k is perpendicular

to the static magnetization). For ϕ = 0 the slope of the dispersion

relation is negative, and the sign of the phase velocity vph = k ω/k2

is opposite to the sign of the group velocity vph, so in this direction

the carrier wave of the spin-wave package travels in the opposite

direction to the movement of its envelope. For ϕ = π/2 the signs

of vph and vgr are the same. The dipolarly dominated spin waves in

the first configuration (ϕ = 0) are called backward waves, whereas

the spin waves observed in the following configuration (ϕ = π/2) are

named Damon–Eshbach waves after their discoverers.39



October 30, 2020 17:33 Optomagnonic Structures - 9in x 6in b4009-ch02 2nd Reading page 100

100 J. W. K�los et al.

In the homogeneously magnetized sample, the presence of the

surfaces (or interfaces) which delimits regions of the spin-wave con-

finement is crucial for the induction of dynamic dipolar field. There

is no dynamic dipolar coupling in unconstrained and homogeneously

magnetized magnetic material, and therefore the spin wave dispersion

relation is flat in dipolar dominated regime vgr = 0. In infinitely

extended and uniform magnetic system the spin-wave cannot carry

the information and energy unless the exchange interactions start to

play a notable role.

4. Magnonic crystals

A popular method of tailoring the flow of waves, beyond the

capabilities of uniform media, is a periodic patterning of a system.

The periodical modulation of the material properties is a well-known

concept in photonics, proposed separately by Yablonovich and John

in 198745,46 who considered the periodical variation of the dielectric

constant.

The same idea can be utilized in the case of spin waves by a

periodic modulation of the magnetic properties (i.e., the parameters

influencing spin-wave spectra). The first theoretical utilization of

a periodical arrangements of ferromagnetic materials in order to

control spin-waves dynamics has been demonstrated already 40 years

ago for the long-wavelength magnetostatic spin-waves.47,48 However,

artificial, periodic ferromagnetic structures, a magnonic counterpart

of photonic crystals, have been started to be named as magnonic

crystals only in the 90s49–51 when the interest in the study of periodic

structures for different types of excitations was regrown after the

discovery of photonic crystals45, 46 combined with the development

of both technologies of nanopatterned structures fabrication suitable

for spin-wave propagation and the development of measurement

techniques allowing spin-wave detection.

Compared to uniform magnetic systems, one of the main advan-

tages of magnonic crystals is the easiness of obtaining a complex

spin-wave spectra with forbidden frequency gaps that can be tailored
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by the structural and material parameters. Until now, various types

of magnonic crystals have been studied,13 for instance: periodic

arrangements of magnetic stripes or dots coupled via dipolar52, 53 or

exchange interactions,54–57 periodic arrays of holes,58, 59 bicomponent

magnonic crystals,60 or periodic magnetic domain arrangements.61

In the following subsections, the fundamental theory of wave prop-

agation in periodic media will be introduced. Then, an exemplary

magnonic crystal constituting of dipolarly coupled magnetic wires

will be analyzed.

4.1. Bloch theorem

Historically, the study of ordinary differential equations in the

periodic potential was initiated by Gaston Floquet in 1883.62 The

field of mathematics related to that is called after his name Floquet

theory with the main theorem known as the Floquet theorem. The

solid-state counterpart of that theorem introduced in 1929 by Felix

Bloch,63 is nowadays referred to as the Bloch’s theorem. Historically,

it was first established for electronic wavefunction in a perfect crystal

(with a perfectly periodic potential). However, this theorem is valid

for all excitations being solutions of the wave equation in a periodic

potential, with magnons among them, as well.

The Bloch’s theorem30 states that the wavefunction ψ (called

Bloch wave) of an excitation (e.g., electron, phonon, or magnon)

within a perfectly periodic potential (medium) can be written in the

following form:

ψ(r) = eik·ru(r),

where the function u(r) is periodic with the same periodicity as the

crystal lattice, i.e., u(r) = u(r + a), a is the lattice vector. According

to the Bloch’s theorem, the Bloch wave is periodic in the reciprocal

space:

ψ(k) = ψ(k + G),
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where G is the reciprocal lattice vector, and k is the wave vector.

The same periodicity show the eigenvalues (energies or frequencies)

corresponding to the Bloch functions. For eigenfrequencies we can

write:

ω(k) = ω(k + G), (34)

which means that the dispersion relation ω(k) is periodic in recipro-

cal space.

4.2. One-dimensional magnonic crystals

In order to illustrate how the periodicity of the structure affects the

dispersion ω(k) of spin waves, let us first discuss the consequences

of Bloch’s theorem on the example of the dispersion relation of the

uniform magnetic media after assumption of an artificial periodicity.

Then, the one-dimensional magnonic crystal in the form of a periodic

in-plane arranged sequence of magnetic stripes will be studied.

The latter structure can be considered to be derived from the

homogeneous magnetic layer discussed in the earlier section.

4.2.1. Empty lattice model

An intriguing example demonstrating the Bloch’s theorem is the

empty lattice model assuming an artificial periodicity in a homo-

geneous medium.

Let us here consider the dispersion relation of spin waves in the

infinite 50-nm thick film made of Py magnetized to the saturation by

the external magnetic field of value μ0H = 0.05 T directed along the

y-axis and spin-wave propagation along the x-axis (k = x̂k). This

dispersion is presented in Fig. 5 by the solid thick black line. The

application of the Bloch’s theorem duplicates and shifts the primary

dispersion (of the thin film) by the multiple of the reciprocal vector,

i.e., nG, where G = ±2π/a and n is an integer (see the solid thin

gray lines). The highlighted region of the dispersion of width equal

to G and located around k = 0 is known as the first Brillouin zone
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(a)

(b)

(c)

Fig. 5. (a) Exemplary magnonic crystal where darker and lighter regions
represent two materials constituting it. (b) Magnonic crystal from (a) plotted
in the reciprocal space (after performing Fast Fourier Transform), the apparent
peaks mark the periodicity of the structure in the reciprocal space — the distance
between them is equal to G = 2π/a and the most prominent peak is located in
the center of the first BZ. (c) Magnonic band structure in 50-nm thick Py film
magnetized along the y axis by the external magnetic field of value μ0H0 = 0.05
T in the empty-lattice model fulfilling the Bloch’s theorem for the artificial
periodicity of a = 500 nm. The thick solid black line corresponds to the dispersion
of Damon–Eshbach configuration, whereas the black thin solid gray lines are
accordingly shifted of that dependence in order to fulfill the Bloch’s theorem.
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(1BZ). Note that in the empty-lattice model an artificial periodicity

is assumed and, therefore, the bands are degenerated at the Brillouin

zone boundary (k = π/a) and at the center of Brillouin zone (k = 0).

These degeneracies can be removed when real periodicity (periodic

modulation of any magnetic properties of media) is assumed. For

instance, a consideration of a magnonic crystal consisting of two (or

more) materials with different magnetic properties (e.g., Co and Py)

or periodic pattern of grooves (film’s thickness modulation) can lead

to the formation of band gaps in the regions of degeneracy in the

empty-lattice model. However, in the subsequent part of the chapter,

a different example as a demonstration of a 1D magnonic crystal will

be presented.

4.2.2. Example of 1D magnonic crystal — periodic array of Py

stripes separated by air gaps

Let us consider here, as an example, the magnonic crystals composed

of Py wires separated by air gaps in such a manner that the lattice

constant is kept the same (a = 500 nm) and the widths of wires

and air gaps between them are changed. The spin-wave dispersion

relations for three ratios between the width of wire and the width

of the gap (equal to 490 nm:10 nm; 450 nm:50 nm; 400 nm:100 nm)

are presented in Figs. 6(b)–(d) and compared to the dispersion for

homogeneous layer of Py with artificially introduced unit cell of

500 nm (lattice constant), see Fig. 6(a). The presented results are

obtained for material parameters of Py: saturation magnetization

MS = 860 kA/m and exchange constant A = 13 pJ/m. In Fig. 6, the

homogeneous layer of Py is changed into a magnonic crystal by the

introduction of very narrow air gaps into the unit cell. It is easy to see

how the spin-wave dispersion relation transforms with increasing the

width of the air gaps separating Py wires. A couple of effects typical

for magnonic crystals can be seen with the air gap widening: (i) the

widths of band gaps increase; (ii) the bands are getting narrower and

are characterized by smaller group velocity; (iii) the FMR frequency

increases and bottom of the bands shifts to the higher frequencies

(which is exceptionally well visible at k = 0).
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Fig. 6. Dispersion relations calculated for a 30-nm thick Py-based magnonic
crystals with the lattice constant of 500 nm and following material parameters:
saturation magnetization MS = 860 kA/m and exchange constant A = 13pJ/m.
On this figure are presented the dispersion relations of (a) uniform Py film
(obtained by empty-lattice model), followed by magnonic crystals composed of
Py stripes of the same dimensions, separated by (b) 10 nm, (c) 50 nm, and (d)
100 nm air gaps. Light grey regions indicate frequency bandgaps. In the insets
are presented unit cells of the calculated structures with the air gaps marked
by black color. The presented results are obtained numerically with the help of
Finite Element Method in the frequency domain and real space. For this purpose,
we have implemented Landau–Lifshitz equation coupled with the Gauss equation
for magnetism in the mathematical module of COMSOL Multiphysics. For more
details regarding used method please check for example Refs. [57,64–66].

5. Photonic–magnonic crystals

The exemplary structure of a photonic–magnonic crystal, is pre-

sented in Fig. 7. The considered structure is composed of thick

(dm =7 μm) magnetic layers periodically interleaved by relatively

thin (dd = 1.9 μm) non-magnetic spacers which can ensure the

dipolar coupling for spin waves confined in the magnetic layers.

The magnetic layer is made of dielectric ferrimagnet: yttrium-iron

garnet (YIG) Y3Fe5O12 whereas the non-magnetic spacers are the

photonic crystals of finite number of subperiodsN composed of TiO2

and SiO2 thin layers. YIG is transparent for electromagnetic waves

and is characterized by minor spin-wave damping. Therefore, the
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SW
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Fig. 7. The considered 1D photonic–magnonic crystal is acting as a magnonic
and photonic crystal. The parameters dm, dd and D = dm + dd denote the
thicknesses of magnetic layers, the thickness of complex non-magnetic layers and
the period of the whole structure, respectively. We assume that the external
magnetic field H0 is applied along the y-direction and is sufficiently strong to
saturate magnetization in the YIG layers. The non-magnetic layer has an internal
structure, as shown in the inset. It has a form of the stack of TiO2 and SiO2, d1
and d2 stand for their thicknesses, respectively.

electromagnetic waves can be localized inside the magnetic layers

where the spin-waves oscillate for long time. It takes place for the

frequencies from band gaps of TiO2|SiO2 photonic crystal, where its

finite sections act as Bragg mirrors.

5.1. Spin-wave dispersion relation

The spin waves perceive the complex structure presented in Fig. 7 as

simple magnonic crystal where the infinitely extended magnetic lay-

ers are arranged periodically in the stack, separated by the dielectric

spacer. The spacers (i.e., the section of TiO2|SiO2 photonic crystal)

break the exchange interactions between magnetic layer but sustain

the dipolar coupling, provided by the dynamic demagnetizing field
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penetrating the non-magnetic medium. The exchange interactions

are limited only to the interior of each magnetic layer. Therefore,

the propagation of spin waves between subsequent magnetic layers is

possible, thanks to the long-range dipolar interactions.

In order to analyze the spin-wave dynamics in considered

photonic–magnonic crystal let us calculate the spin-wave dispersion

relation.

5.1.1. Model

The spin-wave dynamics is investigated in the frame of a continu-

ous model based on the Landau–Lifshitz equation. The linearized

Landau–Lifshitz equation for the stack of dipolarly coupled, in-plane

magnetized infinite layers reads:

i
ω

|γ|μ0H0
mz(r) = mx(r) − MS(x)

H0

×
(
∂

∂x
λ2ex(x)

∂

∂x
mx(r) − λ2ex(x)(k2y + k2z)mx(r)

)

−MS(x)

H0
hmsx ,

i
ω

|γ|μ0H0
mx(r) = −mz(r) +

MS(x)

H0

×
(
∂

∂x
λ2ex(x)

∂

∂x
mz(r) − λ2ex(x)(k2y + k2z)mz(r)

)

+
MS(x)

H0
hmsx , (35)

where the parameter λex =
√

2A/(μ0MS) is so-called exchange

length. Equation (35) must be completed by the formula for the x-

and z-components of the dynamic demagnetizing field, hdm:

hdm,z = −
∑
G

k2zmz(G) + kz(kx +G)mx(G)

κ2
e−iκ·r,

hdm,x = −
∑
G

(kx +G)2mx(G) + kz(kx +G)mz(G)

κ2
e−iκ·r.

(36)
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The formulas (36) are found form Maxwell equations in magneto-

static approximation by the expansion of the dynamic component of

magnetization (being a Bloch function) in the Fourier series:

mx,z(r) =
∑
G

mx,z(G)eiκ·r, (37)

where κ = [kx + G, ky, kz ] and G = nπ/D is the reciprocal lattice

vector for the one-dimensional lattice of the periods D = dm + dd,

(n = 0,±1,±2, . . .).

The material parameters MS(r) and λex(r) are periodic and can

be expanded in the Fourier series as well

MS(x) =
∑
G

MS(G)eiGx, λex(x) =
∑
G

λex(G)eiGx. (38)

Such an expansion allows to transform two differential equations (35)

into the set of algebraic equations for Fourier components mx(G) and

mz(G). This set of equations has a form of the algebraic eigenvalue

problem (with the eigenvalues being the eigenfrequencies ω of spin-

wave modes) and can be solved numerically for a fixed value of the

wave vector k. By solving the eigenvalue problem for the successive

values of k, we can plot the branches dispersion relation: ω(k) and

discuss the spin-wave dynamics in the considered photonic–magnonic

crystal.

The presented computational method, based on the Fourier

expansion of the Bloch waves (solutions) and the material parameters

(coefficients of linear differential equations), is called plane wave

method and is widely used to calculate the dispersion relation for

the Bloch waves in periodic media.

5.1.2. Results

Spin waves can propagate between magnetic layers separated by

nonmagnetic spacers due to the dynamic demagnetizing field, which

couples the precessing magnetic moments at a distance. The mag-

netic film can be magnetized in the out-of-plane direction in the

presence of strong out-of-plane anisotropy, or strong external field

applied perpendicularly to the plane of the film. However, for such
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configuration, the dynamic components of magnetization are oriented

in-plane and do not produce any surface charges. Therefore, the

dynamic demagnetizing field can be produced only by the volume

charges which emerge for non-uniform precession of magnetization

in the film. This non-uniform precession can be achieved by the

spin waves propagation in the plane of a film with the non-zero

wave vector components ky or kz. We considered here the case

where the static magnetization is oriented in-plane due to the shape

anisotropy of the magnetic layers. For such a geometry, the out-

of-plane magnetization produces the dynamic demagnetizing field

hdm,x = −mx, but it can not couple the magnetization between the

films. The efficiency of the dynamical coupling between the magnetic

layers can be observed in the situation when some components of

the spin waves are propagating in the in-plane direction. So, in the

considered system, spin waves can propagate through the layers (with

non-zero group velocity) only in the case of an oblique propagation

to the normal of the layers.

For the considered configuration, the impacts of the (plane

wave) components of spin waves, parallel or perpendicular to the

direction of the in-plane applied external field H0 (described by ky
or kz), on the propagation of (Bloch) spin waves in the x-direction

are distinguishable. Both y-and z-components of the spin-wave

contribute differently to the dynamic demagnetising field (36). This

field is, in turn, responsible for the propagation of the spin-wave

(in the form of Bloch wave) between periodically placed magnetic

layers. In Fig. 8(a), we presented the spin-wave dispersion relation

showing the propagation in the direction of periodicity (i.e., in

the x-direction). The two lowest dispersion branches are strongly

dispersive (have a significant slope, indicating noticeable group

velocity) due to the dynamic dipolar interactions induced by the

presence of the non-zero y-component of the spin-wave. The direction

of the wave vector is here oblique, deflected by the angle θSW =

atan(ky/kx) from the normal direction. For the higher branches, the

exchange interaction starts to dominate, but this type of interaction

is limited to the interior of the magnetic layers. Due to the lack

of the exchange coupling between the magnetic layers, the higher
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Fig. 8. (a) Spin waves spectrum for the photonic–magnonic crystal (dm = 7 μm,
dd = 1.9 μm) with the external magnetic field of value μ0H0 = 10 mT applied in
the plane of layers (along the y-axis). The non-zero in-plane wave vector (ky =
0.2 2π

D
, kz=0) component induces the non-vanishing dynamical demagnetizing field

along with the periodicity of the system which couples the spin waves across the
non-magnetic dielectrics and allows the formation of the propagating modes in
the first and second band. (b) The dependence of the lowest eigenfrequencies on
the direction of the spin-wave propagation (θSW means the angle between the
direction of propagation of spin waves and normal to the interfaces).19

exchange dominated branches are flat. In order to investigate how

the contribution of the in-plane y-component of the spin-wave affects

the propagation in the x-direction, we fixed the length of the wave

vector |k| =
√
k2x + k2y and changed the angle θSW. In Fig. 8(b), we

can see that for θSW → 0 the lowest (dispersive) modes are shifted

up towards the frequencies of (dispersionless) exchange dominated

modes. It shows that for the propagation in the normal direction,

the dispersion branches become flat because the coupling between

the magnetic layer is reduced.

Regardless of the coupling between the magnetic layers, the

magnetization dynamics take place only there. So, in order to

enhance the interaction between spin waves and electromagnetic
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waves, the electromagnetic waves in the magnetic layers should be

confined, as well. In order to achieve this goal, the spectral properties

of electromagnetic waves in photonic-magnonic crystal should also be

investigated.

5.2. Electromagnetic wave transmission

Now let us consider transmission of electromagnetic waves through

the photonic–magnonic crystal presented in Fig. 7(b). For electro-

magnetic waves this structure can be treated as a magneto-photonic

crystal with double periodicity: with the subperiod d = d1 + d2
inside the dielectric photonic crystal layer composed of N layers

of TiO2 and SiO2 and the period D of the alternating YIG and

dielectric photonic crystal layers. We assume that each dielectric

composite layer of thickness dd consists of N subperiods of thickness

d = d1 + d2 and additional sublayer of TiO2, so the thickness of

the dielectric composite layer is dd = Nd+ d1, as shown in Fig. 7(a).

Further we will change the number of the unit cells N , assuming that

the thickness of the composite dielectric layer dd is fixed and does

not change with the increasing number N . We choose the dielectric

sublayer thicknesses to be in proportion d1/d2 = 2/3, so the dielectric

sublayer thicknesses are d1 = 2dd/(5N + 2) and d2 = 3dd/(5N + 2).

The photonic–magnonic crystal structure consists of M periods of

thickness D = dm + dd = dm +Nd+ d1 and the additional covering

magnetic layer of YIG of thickness dm, as shown in Fig. 7. The unit

cell of the photonic–magnonic crystal is presented in circular inset of

Fig. 7.

5.2.1. Method

We assume that electromagnetic waves with the wave vector kEM

is incident from vacuum at an angle θ on the right surface of the

photonic–magnonic crystal structure depicted in Fig. 7(b) in the

plane xy. For the case of in-plane magnetized YIG layers, this mutual

orientation of the magnetization vector and kEM corresponds to

the longitudinal magneto-optical configuration.11 In the optical and

near infrared (IR) regimes the dispersive refractive indices of TiO2
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and SiO2, n1(λ) and n2(λ), respectively, have the form presented in

Ref. [67].

Both dielectric compounds (the titanate oxide and the silicon

oxide, medium 1 and 2, respectively) are characterized by cubic

symmetry of their elementary unit cell and the dielectric tensors of

these materials have the diagonal forms with dielectric permittivities

ε1(λ) = n21(λ) and ε2(λ) = n22(λ), respectively.

For the YIG layers we use the dispersive refractive index within

the IR wavelength interval from 1.2μm till 5.8μm which is well

approximated by the formula given in Ref. [68]. In near IR regime

YIG possesses bigyrotropic properties and we take into account the

off-diagonal components of the dielectric permittivity and magnetic

permeability tensors. For the case of magnetization vector M directed

along the y-axis, the tensors of dielectric permittivity and magnetic

permeability have the form given in Ref. [11].

ε̂m =

⎛
⎜⎝ εm 0 iε′

0 εm 0

−iε′ 0 εm

⎞
⎟⎠ , μ̂m =

⎛
⎜⎝ μm 0 iμ′

0 μm 0

−iμ′ 0 μm

⎞
⎟⎠ . (39)

According to Ref. [69] for YIG the off-diagonal material tensor

elements are ε′ = −2.47·10−4 and μ′ = 8.76·10−5. For the considered

frequency regime μm = 1 and εm = n2m(λ).

For our calculations of transmittivity spectra of the photonic–

magnonic crystal the 4D transfer matrix method70 has been used.

The (4 × 4) total transfer matrix T̂tot connects the electromagnetic

waves’ field magnitudes at the right and left surfaces of the the

photonic–magnonic crystal as:

T̂tot = ÂmÊm(dm)(T̂ )M Ŝm0, (40)

where the transfer matrix T̂ , corresponding to the period D, is

written as:

T̂ = Ŝm1Ê1(d1)(T̂0)N Ŝ1mÊm(dm) (41)

with the subperiod transfer matrix T̂0, corresponding to the period

formed with the pair of dielectric layers 1 and 2:

T̂0 = Ŝ12Ê2(d2)Ŝ21Ê1(d1). (42)
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It should be mentioned that the matrix T̂0 has a block form

T̂0 = diag
[
T̂0,s, T̂0,p

]
with (2 × 2) matrices T̂0,γ , where γ = (s, p)

corresponds to s- and p-polarized electromagnetic waves.71

In Eqs. (40)–(42) the matrices Ŝij (i, j = 0, 1, 2, m) characterize

the transitions of electromagnetic waves through the boundaries of

the corresponding media (see details in Refs. [18, 71]). The diagonal

matrices Êj(dj), (j = 1, 2, m) present the phase incursions within

the corresponding dielectric and magnetic layers.18

In the case of the infinite two-periodic magneto-photonic crystals

the dispersion relations of the normal electromagnetic waves has the

following form71:

cos(k±, xD) =
1

4

(
Tr (T̂ ) ±

√
2Tr (T̂ 2) − (Tr (T̂ ))2 + 8

)
, (43)

where the transfer matrix T̂ given by Eq. (41) and k± are the

photonic-magnonic crystal’s eigenmode wave numbers.71

For a dielectric photonic crystal with the period d the normal

electromagnetic waves are s- and p-polarized waves with the disper-

sion relations

cos(kx,γ d) =
1

2
Tr (T̂0,γ), (γ = s, p) (44)

where T̂0,γ are the corresponding parts of the block matrix T̂0, given

by Eq. (42) and kx,γ are the wave numbers for eigenmodes of photonic

crystal. At the normal incidence of light kx,s = kx,p, and k+,x = k−,x.

5.2.2. Results

We calculate the dispersion and transmittivity spectra within the

wavelength range from λmin = 0.7μm till λmax = 5.0μm where the

dielectric materials TiO2 and SiO2, forming the composite layer, as

well as magnetic YIG are transparent. The number of the periods

is chosen to be M = 9, while the number of the unit cells in the

dielectric photonic crystal layers (subperiods) N is varying under

condition, that dd = Nd+ d1 = 1.9μm is fixed.

We consider the incidence of linear s- or p-polarized electromag-

netic waves on the right-side surface of photonic-magnonic crystal
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(see Fig. 7 (b)). At the left-side surface of the photonic-magnonic

crystal the transmitted elliptically polarized wave is a combination

of the electromagnetic wavess of s- and p-polarizations which can be

experimentally separated using the polarizing filter.

In the presence of magnetic layers in a photonic structure, the

transmittivity matrix has four non-zero components: the diagonal

components Tss, Tpp and off-diagonal ones Tsp, Tps. The diagonal

components are responsible for the experimental geometry when the

incident s- or p-polarized input light gives the output light of the

same polarization (s or p, respectively). The non-zero off-diagonal

components Tsp and Tps are due to the magnetic layers, and they

correspond to the other two experimental geometries: when the s-

polarized input light gives p-polarized output and, vice versa, the

p-polarized input light produces the s-polarized output.

In Figs. 9(a)–(f) we present the color maps of the logarithm of

absolute values of the transmittivities log(|Tss|) and log(|Tpp|) (the

left and right columns, respectively), as functions of frequency of

electromagnetic waves and the incidence angle θ for the photonic–

magnonic crystal based on the magnetic (YIG) layers and composite

dielectric layers (TiO2/SiO2)
N containing N dielectric subperiods in

the cases of N = 3 (Figs. 9(a) and 9(b)), N = 5 (Figs. 9(c) and

9(d)), and N = 7 (Figs. 9(e) and 9(f)). As dd = 1.9μm is assumed to

be the fixed value, the dielectric layer thicknesses d1 and d2 depend

on N and we obtain d1 ≈ 0.235μm and d2 ≈ 0.335μm for N = 3;

d1 ≈ 0.141μm, d2 ≈ 0.211μm, for N = 5, and d1 ≈ 0.103μm,

d2 ≈ 0.154μm, corresponding to the photonic–magnonic crystal with

N = 7. We concentrate our attention on the lowest in frequency

photonic bands within the frequency range from ωmin = 0.38 rad·PHz

to ωmax = 2.69 rad·PHz.

To investigate the influence of magnetic layers on the trans-

mittivity spectra, we compare the photonic band gaps (PBGs) for

the photonic–magnonic crystal with those of pure dielectric infinite

photonic crystal with the unit cell (TiO2/SiO2). In Figs. 9(a)–(f)

the dashed lines denote the PBG edges for the infinite dielectric

photonic crystals of structure with the layer thicknesses d1 and

d2, corresponding to those of the photonic-magnonic crystal with
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. The electromagnetic waves transmittivity spectra of the photonic–
magnonic crystal with N dielectric composite layers (TiO2/SiO2)

N and magnetic
(YIG) layers as a function of the incidence angle and frequency of electromagnetic
waves: (a) and (b) N = 3, (c) and (d) N = 5, and (e) and (f) N = 7.18 The left
and right columns correspond to log(|Tss|) and log(|Tpp)|, respectively. The black
color marks the photonic band gaps (PBGs) The dotted lines denote the PBG
edges for the infinite dielectric photonic crystal with the unit cell (TiO2/SiO2).
The circles in (e,f) mark the inside-PBG modes which spectra are zoomed in
Fig. 10.

N periods. As one can see from Figs. 9(a)–(f), for N = 3, 5, 7,

the positions of PBGs for pure dielectric photonic crystals and

corresponding photonic–magnonic crystals almost coincide, so the

PBGs of the infinite dielectric photonic crystal is a little narrower.
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Moreover, in the case of N = 3 in the spectra of the infinite dielectric

photonic crystal the additional PBG band starts to form in vicinity

of ω � 1.7 rad·PHz. In the cases of N = 3, at normal incidence of

light there are four inside-PBG bands, which are presented as bright

stripes in Figs. 9(a), and 9(b). The inside-PBG modes are neither

equivalent nor equidistant. One can see from Figs. 9(a), and 9(b)

that with increasing θ the high frequency PBG edge splits and the

new two inside-PBG modes appear. For N = 3 when θ ≈ 65◦, the first

inside-PBG mode merges with the low frequency PBG edge and as a

result, at large incidence angles only tree inside-PBG modes remain.

As one can see from Figs. 9(a)–(f), with increasing of the incidence

angle, both PBG edges slightly shift to higher frequency range. At

grazing incidence for |Tss| the PBG widths become broader then for

normal incidence, while for |Tpp| the PBG widths become narrower.

The similar peculiarity are present in the spectra in the cases of larger

N (see the details in Refs. [18,19]). The number of inside-PBG bands

at normal incidence increases to 7 for the photonic–magnonic crystal

with N = 5 and to 10 for the case of N = 7. For all N , for s-polarized

light the inside-PBG bands are essentially narrowing with increase

of the incidence angle while for p-polarized light the inside-PBG

modes broaden with the increase of θ. In all cases of N , the maximal

values of transmittivities within all inside-PBG bands is very close

to unity. Comparing the corresponding parts of figures: Figs. 9(a)

and 9(b), Figs. 9(c) and 9(d), Figs. 9(e) and 9(f), one can see, that

the increase of the subperiods number N in the composite dielectric

layers leads to essential shift of the PBGs to higher frequencies for

both polarizations. In all cases (N = 3, 5, 7), the positions of the

PBG edges and inside-PBG bands at θ = 0 are the same for |Tss|
and |Tpp|.

In the considered photonic–magnonic crystal in the longitudinal

magneto-optical configuration the off-diagonal components Tsp and

Tps are of the order 10−3. The positions of the PBG edges and inside-

PBG modes for Tsp and Tps coincide with those for the corresponding

diagonal components of the transmittivity matrix (Tss and Tpp,

respectively). Despite the fact that the off-diagonal components of

the transmittivity matrix are two orders of magnitude smaller then
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the diagonal ones, they play important role in the magneto-optical

effects, such as Faraday rotation and Kerr effect.

We also calculated the analogous spectra of electromagnetic

waves for the photonic structure, which differs from those, considered

above, only by replacing of the dielectric composite layers with

the homogeneous dielectric material TiO2 of the same thickness

dd = 1.9 μm. For this structure there is no PBGs in the transmittivity

spectra for s- and p-polarized electromagnetic waves in the considered

frequency range. It means that the PBGs observed in photonic–

magnonic crystal with double periodicity are due to the subperiodic

structure of the dielectric layers.

To have more insight into physics of the inside-PBG bands in

the photonic–magnonic crystals under consideration, we calculate

the transmittivity in the vicinity of these inside-PBG bands in

a narrow frequency range. It appears, that the inside-PBG band

exhibits the fine-structure, i.e., each inside-PBG band consists of a

set of subpeaks. In Fig. 10, we show in details one of the inside-

PBG band from the PBG for |Tss| spectra and for |Tpp| for the

photonic–magnonic crystal with the dielectric composite with N = 7

subperiods (i.e., the same as was studied in Figs. 9(e), 9(f)) for the

cases of normal incidence of light Fig. 10(a), for θ = 30◦ Fig. 10(b)

and θ = 50◦ Fig. 10(c). The inside-PBG band consists of six very

narrow and high subpeaks with |Tss(ωsub)| ≈ |Tpp(ωsub)| ∼ 1, and

the number of fine-structure subpeaks depends on the periods in the

magnonic crystal. For the normal incidence the subpeaks for |Tss| and

|Tpp| spectra coincide, as we previously observed for the PBG edges

and inside-PBG bands in the wider frequency ranges.18 It should be

noted that in the case of the infinite photonic-magnonic crystal the

fine structure of the inside-PBG peaks disappears as all subpeaks

merge.

We also investigated properties of the electromagnetic waves

spectra of the photonic–magnonic crystal with magnetic (YIG) layers

of thicknesses D1 andD2 alternating through the composite structure

(TiO2/SiO2)
3TiO2.

20 Combination of YIG layers and non-magnetic

composite structure thus forms a photonic–magnonic crystal with

the supercell period D = D1 + D2 + 2dd (see Fig. 11). The number
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Fig. 10. The exemplary fine-structure of the inside-PBG band for |Tss| and
|Tpp| transmittivity spectra in photonic–magnonic crystal composed of the
(TiO2/SiO2)

7 multilayers and magnetic (YIG) layers, for normal and oblique
electromagnetic wave incidence angles: (a) θ = 0 (normal incidence), (b) θ = 30◦,
and (c) θ = 50◦.18 The solid and dashed lines corresponds to the s- and p-polarized
electromagnetic waves, respectively. In (a) both curves overlap.

of the supercells is fixed to 7. For the numerical calculations, we

choose the thicknesses of the dielectric photonic crystals to be equal

dd = 1.9μm, with TiO2 and SiO2 layers of d1 = 0.224μm and

d2 = 0.335μm, respectively. We vary the thicknesses of YIG layers,

starting with D1 = D2 = D0 = 7.0μm and keeping the total

thickness of the supercell fixed as D = 17.8μm. Thus, the thicknesses
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Fig. 11. Schematic of the 1D photonic–magnonic crystal with supercell consist-
ing of two magnetic layers (YIG) of different thicknesses D1 and D2 and two
insets of dielectric photonic crystal structure (TiO2/SiO2)

3 TiO2.

of YIG layers are D1 = D0±ΔD and D2 = D0∓ΔD, where ΔD > 0

is the deviation of YIG layer thickness from the nominal value D0.

In general, we will consider the photonic–magnonic crystal, where

the first YIG layer thickness is decreasing, D1 = D0 − ΔD, thus, it

is smaller than the thickness of the next YIG layer D2 = D0 + ΔD,

which is increasing, i.e., D1 < D2.

The evolution of the PBG spectrum with reduced deviation of the

YIG layer thickness, log(T ) as a function of ωd/(2πc) and ΔD/D0, is

shown in Fig. 12. The transmittivity demonstrates quasi-periodical

dependence on ΔD/D0, with the period of about 0.08D0 or 0.56μm,

which slightly changes with the frequency. The branches of the defect

modes of higher and lower intensities alternate in the opposite order

for the photonic–magnonic crystals, which begin with thicker and

thinner magnetic layers, as one can see comparing the insets in

Fig. 12.

In order to explain such dependence of the transmittivity on ΔD,

in Figs. 13(a) and 13(b), we plot the transmittivity evolution with
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Fig. 12. (a) Evolution of the PBG specter with reduced YIG layer thickness
deviation ΔD/D0 for normal incidence of light. (b) and (c) Four inside-PBG
modes in the transmittivity spectra of the photonic–magnonic crystal beginning
with (a) thinner (D1 < D2) and (b) thicker (D1 > D2) magnetic layers,
respectively, within one period.20 The color shows the value of log(T ).
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Fig. 13. The transmission of s-polarized light through the single YIG layer
as a function of ΔD/D0 for the normal incidence with (a) decreasing or (b)
increasing initial thickness D0 = 7.0μm and (c) the contributions of increasing
and decreasing thicknesses of two YIG layers. (d) The transmission spectrum of
the photonic–magnonic crystal with seven superperiods.20

ΔD/D0 for a single magnetic layer with decreasing and increasing

thicknesses, respectively. The decrease of YIG layer thickness pro-

duces a set of lines going up with increase of frequency. On the

contrary, the increase of ΔD gives a set of lines going down with

the frequency increase. Combinations of these two contributions,
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which take place in the unit supercell and the photonic–magnonic

crystal, are illustrated in Figs. 13(c) and 13(d), respectively. Thus,

there are two types of the defect modes in the PBG of the photonic–

magnonic crystal with two magnetic layers of different thicknesses

in the supercell: one of them is caused by increase of one YIG layer

thickness in the supercell and another one is due to its decrease.

However, from the transmittivity spectrum of the given photonic–

magnonic crystal, it is impossible to define, which inside-PBG mode

corresponds to increase or decrease of YIG layer thickness.

5.3. Faraday and Goos–Hänchen effects

The Faraday effect was discovered in 1845 and defined as the

rotation of the polarization plane of a linearly polarized optical beam

transmitted through a magnetic material, as schematically shown in

Fig. 14(a) in the case of longitudinal magneto-optical configuration.

The Faraday rotation can be used in non-reciprocal devices such

as optical isolators and circulators which are used for the routing

of optical signals, as well as in the investigation of the magnetic

structure of thin magnetic films and magnetic multilayers,11, 72, 73

for sensing of magnetic state74 or even for chemical detection

techniques.75

(a) (b)

k
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k
(t)

E(t)
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L SM

Fig. 14. Schematics of (a) Faraday rotation and (b) Goos–Hänchen effect in
photonic structure. Here E and k are the electric field and wave vector of an
electromagnetic wave, θ is incidence angle, ϕ is Faraday angle, ΔL and ΔS are
lateral shifts of the reflected and transmitted beams. The superscripts (i), (r) and
(t) refer to the incident, reflected and transmitted waves.
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It is convenient to characterize and quantify the magnetically

induced polarization changes by using Faraday angles which can

be calculated in terms of the transmission matrix elements and

defined as

tan (ϕs) = −Re

(
Tps
Tss

)
, tan (ϕp) = −Re

(
Tsp
Tss

)
. (45)

It should be noted that reversal of the magnetization of all mag-

netic layers leads to reversal of both Faraday angles ϕs and ϕp.

Another phenomenon is Goos–Hänchen effect. The lateral shift of

a reflected beam relative to its geometrical optics position was

reported for the first time in 1947 by Goos and Hänchen in the

case of the total internal reflection at the interface between two

dielectric media.76,77 Although this effect was originally predicted

and observed at a single interface under the conditions of total

internal reflection, similar beam shifts have since been studied in

a great variety of configurations and systems, including photonic

crystals. Among its many proposed practical applications, the Goos–

Hänchen effect has been suggested for instance for the design of

chemical sensors,78–81 biosensors,82 thermosensors83 detectors, or

detectors of surface roughness.84

Figure 14(b) shows schematic of the lateral shift of an electro-

magnetic beam reflected from (ΔL) and transmitted through (ΔS)

a photonic structure. In this chapter, we limit our discussion to the

transmission geometry.

Assuming that the incident beam is a Gaussian wavepacket with

waist w0 and using the stationary phase method,85 one can derive

the lateral shift ΔS of each component of the transmitted beam

in terms of the complex transmission coefficient Tij and its phase

Arg(Tij), and the x-component of the wave vector kx as

ΔSij = −∂Arg(Tij)

∂kx
+
∂ ln |Tij|
∂kx

∂2Arg (Tij)

∂k2x

(
w2
0 +

∂2ln |Tij |
∂2x

)−1

.

(46)

Figs. 15(a) and 15(b) present Faraday angles ϕp of p-polarized and

ϕs of s-polarized incident light, respectively, as functions angular
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Fig. 15. Spectra of the angles of Faraday rotation ϕp (a) and ϕs (b), and GHS
within the PBG for the incidence angle = 30◦ and the structures M(AB)4AM,
[M(AB)4A]2M, [M(AB)4A]5M, and [MA]5 AM. Note different vertical scale on the
left and right vertical axes in (b). The grey areas correspond to the transmission
band, and light gray area is zoomed in Fig. 16.

frequency ω for the incidence angle θ = 30◦ for the photonic–

magnonic crystals with different number K of super-cells.

The Faraday angles in the structure M(AB)4AM with four

dielectric unit cells andK = 1 magnetic super-cell are shown with red

lines. In this case, as was mentioned above, the repetition of dielectric
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unit cells (AB) between the magnetic layers leads to forming a PBG

in the transmittivity spectra of the structure, and narrow-frequency

defect modes of high transmittivity appear inside the PBG due

to magnetic layers on both sides of the dielectric photonic crystal

which act as defect layers. Both Faraday angles ϕp and ϕs are

negative (around 0.02◦) and their absolute value slightly increases

with increase of ω.

With increase of the number K of the magnetic supercells

M(AB)4A each inside-PBG mode becomes narrower and splits into

set of subpeaks. The Faraday angles inside the PBGs decrease (see

green lines for the structures [M(AB)4A]2M with K = 2 magnetic

super-cell and blue lines for [M(AB)4A]5M with K = 5 magnetic

super-cell), but in the variations of ϕs are larger than those of ϕp.

Indeed, in the structure [M(AB)4A]5M, ϕs is about one order of

magnitude larger than ϕp. Both Faraday angles in the latter case can

change sign at some frequencies, and the most noticeable variations

of the Faraday angles take place around the inside-PBG modes.

Since Faraday effect increases with thickness of the magnetic

layer,11 it makes sense to compare the Faraday angles in a biperiodic

photonic–magnonic crystal [M(AB)4A]5M with Faraday angles in the

similar structure with homogeneous dielectric spacer [MA]5M with

dA = dd, so that the total thickness of the magnetic layers in these

two structures is the same. For the structure with homogeneous

dielectric spacer no PBG occurs at the frequency range under

consideration for the thicknesses dd and dM which we have chosen

for calculations. The Faraday angles are negative (magenta lines); the

absolute values of ϕs are much less than those in the case of biperiodic

photonic–magnonic crystal with K = 5 (compare magenta and blue

lines in Fig. 15(b) keeping in mind the different vertical scale for

these curves). The values of ϕp, however, are slightly larger in the

case of the structure [MA]5M than in the case of [M(AB)4A]5M,

except the regions which correspond to inside-PBG modes in the

latter structure. Thus, periodicity introduced by dielectric photonic

crystal modifies drastically the polarization plane rotation and allows

achieving larger values of Faraday angles.

In Figs. 16(a) and 16(b) we show the details of a single inside-

PBG mode and the corresponding Faraday angles of the light
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transmitted through a biperiodic photonic–magnonic crystal of the

structure [M(AB)4A]5M. The positions of the Faraday angle maxima

do not correspond to position of the inside-PBG mode peaks in the

spectra of the diagonal transmission coefficients, as follows from the

comparison of black solid and gray solid lines in Figs. 16(a) and 16(b).

The origin of this behavior lies in the complex interplay between the

diagonal and off-diagonal components of the transmission matrix

(the frequency positions of the subpeaks of Tpp and Tss spectra are

different but overlap with those in Tps spectrum — showed by black

dashed line in Fig. 16(a)), whose ratio defines the values of ϕp,s (see

Fig. 14).

It should be noted that when the diagonal transmittivity coef-

ficient Tss is maximal, the Faraday angle reaches values up to 0.1◦

for s-polarized incident light, whereas for p-polarized incident light

the Faraday angle does not exceed −0.02◦ at the corresponding

transmittivity Tpp peaks (compare Figs. 16(a) and 16(b)).

Frequency dependence of the lateral shift ΔSpp is shown in

Fig. 15(c) for the incidence angle θ = 30◦ for the photonic–magnonic

crystal structures with different number K of super-cells. The lateral

shift is negative and overall increases with increase of the super-cell

number K. The series of abrupt peaks of the lateral shift appear

at the frequencies of the inside-PBG modes. In the case when the

magnetic layers are separated by homogeneous dielectric layer, the

lateral shift is slightly larger (in absolute value) at the frequencies

away from the inside-PBG modes than the shift in the similar

biperiodic structure. In the latter, at the inside-PBG frequencies,

the lateral shift can reach large values about 100λ (see for details

Fig. 16(c)).

The lateral shift demonstrates the same fine structure, and the

frequency positions of the subpeaks of ΔSij coincide with those of

Tij , as shown in Figs. 16(a) and 16(c). The lateral shift ΔSps of

the cross-polarized contribution to the transmitted light can be as

negative, as positive (gray line in Fig. 16(c)), contrary to ΔSpp and

ΔSss which are always negative. Positions of the positive maxima of

ΔSps correspond to the position of the gaps between the subpeaks

of Tps (compare gray lines in Figs. 16(a) and 16(c)). It should be
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noted that not every gap in Tps is accompanied by a positive peak of

the lateral shift. For instance, in the middle of the inside-PBG mode

(at ω ≈ 1.072 rad PHz) Tps exhibits a smooth change which does not

result in large variations of its phase and, according to Eq. (46), does

not produce a lateral shift peak. Contrary to the Faraday angles,

the positions of the lateral shift peaks of p- and s-polarized light

correspond to those of the transmittivity maxima.

6. Summary

The light can be strongly confined in the magnetic layers placed

periodically in the structure of a photonic crystal. This localization

is possible for the frequencies in the range of PBGs. Due to the

strong localization of inside-PBG modes in magnetic medium, the

magneto-optical effects are enhanced. We observed the increase of

the Faraday rotation for inside-PBG modes. For the magnetic layers

magnetized in-plain, the increase in Faraday rotation is particulate

strong for s-polarized incoming light. The inside-PBG modes are

decaying exponentially when penetrating the sections of photonic

crystal but can still weakly interact each other. Therefore, they

exhibit fine spectral structure which is the signature of their collective

character resulting from the periodic repetitions of magnetic layers.

The considered periodic stack of magnetic layers separated by

non-magnetic spacers (i.e., the sections of photonic crystals) forms

also the magnonic crystals for spin waves. The spin-wave modes

are excited only in magnetic layers but the spin-wave dynamics

can be coherent in the whole system due to demagnetizing field

penetrating the non-magnetic spacers. So, we can consider the

spin-wave propagation in arbitrary direction, including also the

propagation between the magnetic layers. For in-plane magnetized

and infinitely extended magnetic layers, this coupling mechanism is

efficient only for oblique direction of wave vector. In other words, the

spin-wave propagation from layer to layer has to accompanied by the

component of the spin-wave propagating in-plane.

The discussed structures, called photonic–magnonic crystals

support the existence both the electromagnetic waves and spin waves.
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We expect that photonic inside-PBG modes, localized in magnetic

layers, can couple to spin waves more effectively than other kinds of

electromagnetic modes.
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