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Abstract: We present a theoretical formalism to describe the amplification of two monochro-
matic waves counter-propagating in a rare-earth-doped optical fiber amplifier. Interaction of the
waves through a dynamical population inversion grating inscribed in the active fiber by the waves
during their amplification results in a strong power transfer from one wave to another providing
a preferable amplification of one wave at the expense of another. In this sense, the effect is
similar to stimulated Brillouin scattering and is expected to be observed with both pumped and
unpumped rare-earth-doped fibers possessing a finite polarizability difference between the excited
and ground states.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In contrast to the stationary Fiber Bragg Gratings (FBG), the dynamical gratings (DG) can
be implemented only temporarily in an optical fiber. The light-induced dynamic gratings are
inscribed through the interaction between the optical medium and an interference pattern formed
by a number of coherent light waves [1]. A physical mechanism responsible for dynamic grating
inscription strongly depends on the media properties. Acoustic waves enhanced by a stimulated
Brillouin scattering (SBS) in optical fibers create a refractive index grating known as Brillouin
dynamic grating (BDG) that has recently emerged as a flexible tool for optical processing,
microwave photonics and distributed sensing [2–7]. The population inversion dynamical gratings
(PIDG) inscribed by counterpropagating optical waves in rare-earth-doped fibers are responsible
for rather slow or even stationary dynamical effects [8]. In standing-wave lasers, spatial hole
burning induces a static grating of the population inversion, enabling multimode operation with
several independent lasing modes [9]. In open-cavity fiber lasers, the slowly-moving PIDGs
inscribed in an active medium by intracavity radiation have a reverse effect on the inscribing
waves via feedback they provide leading to so called “mode-pulse” laser operation different
from mode-locked and Q-switched laser regimes [10,11]. Among other PIDG applications are
adaptive interferometry and nonlinear filtering enabling narrowband operation of semiconductor
and fiber laser configurations [12–16].

Brillouin amplification, the most prominent effect implemented with BDG, enables exponential
narrowband gain that is Stokes-shifted by some value in the GHz range [17,18]. In this process,
the interaction of the counterpropagating pump and Stokes waves through a BDG they produce
causes an increase of the Stokes-shifted wave amplitude and decrease of the pump wave amplitude
during their propagation through the fiber. Here, we report on a similar effect that could be
implemented in rare-earth-doped fibers with the PIDG. The effect is the most pronounced
in a bidirectional rare-earth-doped optical fiber amplifier. In general, the fiber depicted in
Fig. 1 exhibits the population inversion gain G(z) caused by some external pump field. Two
monochromatic optical signal waves with amplitudes E+S and E−

S are introduced into the fiber from
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opposite ends and experience amplification (if the fiber is pumped) or attenuation (if the fiber is
unpumped) as they propagate through the fiber. The signal waves are coherent on a sub-kHz level
and slightly detuned. In terms commonly accepted in SBS these counterpropagating signal waves
correspond to what is referred to as “pump” and “Stokes” waves. However, in contrast to the
Brillouin process, their interference inside the rare-earth-doped fiber creates not acoustic, but the
population inversion dynamical gain grating described by the amplitude g(z). Then interaction
between the signal waves and created PIDG causes a strong power transfer from one signal wave
to another.

Fig. 1. Amplification of counter-propagating optical signal waves in a rare-earth doped
optical fiber. E±

S (z) are signal wave amplitudes, ω±S are signal wave frequencies, ∆ωS =
ω+S −ω

−
S is detuning of the signal waves, G(z) is population inversion gain caused by some

external pump field (it is not shown), g(z) is the amplitude of the population inversion gain
gratings created by the interference of signal waves, β⃗±S and q⃗S are the wave vectors of the
signal waves and PIDG, respectively, V is the PIDG group velocity, L is the fiber length.

Like Brillouin amplification, the effect exhibits a strong resonance dependence on the frequency
detuning∆ωS = ω

+
S−ω

−
S , whereω±

S denotes the frequencies of the signal waves and the dynamical
wave equations are similar to the SBS equations [19–21]. At each fiber point the most effective
power transfer is achieved at the frequency detuning ∆ωS matching the local grating relaxation
time τG that is determined by the doping rare-earth-ion lifetime T and decreases with an increase
of operating powers. In contrast to SBS, the power transfer in the rare-earth-doped fibers can
occur either to the wave with higher (anti-Stokes) or lower (Stokes) frequency. Anti-Stokes wave
amplification dominates in pumped fibers, while amplification of the Stokes wave could occur in
fibers without pumping. In this paper, we give a clear physical insight into the Brillouin-like
amplification in rare-earth doped optical fibers and present important details of the fiber model.
In particular, the equations reproducing inscription of the population inversion gratings in the
fiber by counterpropagating monochromatic optical signals and the dynamics of the reverse effect
the inscribed gratings produced on the amplification process are derived and presented in terms
of standard fiber specifications.

2. Mathematical model

In our consideration the rare-earth-doped optical fiber shown in Fig. 1 is single-mode and
pumped by some external pump field. The population inversion provides an amplification to the
monochromatic optical signal waves with amplitudes E+S and E−

S counterpropagating through the
fiber. Without a loss of generality, we can assume in this paper that the fiber under consideration
is an ytterbium-doped silica optical fiber, the pumping source wavelength is λP ∼ 975nm and the
optical signal wavelengths are around λS ∼ 1060nm. Silica glass, the most common material
for manufacturing fibers, is a good host for Yb-ions [22]. The spectroscopy of the Yb-ion
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shown in Fig. 2(a) is simple compared to other rare-earth ions. For amplification in the optical
spectrum range, only two-level manifolds are important: the ground-state manifold (2F7/2) and
the excited-state manifold (2F5/2). Although they consist of four and three sublevels, respectively,
the transitions between sublevels are smoothed due to strong homogeneous and inhomogeneous
broadening. Yb-doped fibers are able to produce optical gain over a very broad wavelength range
spanning from 975 to 1200 nm with a range of possible pump wavelengths from 860 nm to 1150
nm (Fig. 2(b)). A number of pronounced laser effects governed by the population inversion
mechanism have been observed in single-mode Yb-doped optical fibers under resonant diode
pumping at 975 nm. Importantly, similar to other rare-earth-doped fibers the Yb-doped fibers are
subjected to electronic refractive index change (RIC) effect that is the side effect of the population
inversion mechanism [23,24]. Commonly, the two-level population laser model [25,26] is enough
to provide an accurate interpretation to these effects as confirmed by multiple experimental
observations. Here, we use the two-level population laser model to explore the Brillouin-like
amplification in rare-earth-doped fibers and to demonstrate its spectral and dynamical properties.

Fig. 2. The atomic manifold level system (a) and emission and absorption cross section of
ytterbium in silica host (b). 1, 2 and 1̂, 2̂, 3̂, 4̂ indicate the levels for two- and four- level
laser models, respectively.

Mathematically, we consider amplification of two monochromatic optical signals E±
S exp

[i(ω±
S t ∓ β±S z)] with the propagation constants β±S propagating through the fiber in positive (+)

and negative (-) directions, respectively. An external pumping (one- or two- directional) creates
both the population density of Yb-ions in the excited state N2(z) and corresponding optical gain
factor G(z) smoothly distributed over the fiber. Due to the optical gain G(z) the amplitudes E±

S
increase as the optical signals propagate through the fiber.

On the other hand, the superposition of the amplified counter-propagating optical fields
inside the fiber forms an interference pattern I(t, x) ∼ E+S E−∗

S exp[i(∆ωSt − qSz)] covering the
whole fiber length, where the frequency difference is ∆ωS ≡ ω+S−ω

−
S , the wavenumber is

qS = β
+
S+β

−
S ≈2ω̃Sn/c and ω̃S ≡ (ω+S+ω

−
S )/2. The interference pattern I(t, z) produces a spatial

longitudinal modulation of the population density N2(z) in the fiber core δN2(t, z) ∼ I(t, z)
resulting in a similar modulation of the optical gain δG(t, z) ∼ I(t, z). Due to the electronic RIC
effect mentioned above, the modulation of the optical gain δG(t, z) is followed by the identical
modulation of the fiber core refractive index δn(t, z) ∼ I(t, z). This bundle of quantities combined
as Γ = (δG + ik0δn)exp[i(∆ωSt − qSz)] is referred to as the population inversion dynamical
grating (PIDG). Here, the first and second terms are known as the amplitude (gain) and phase
dynamical gratings, respectively. In two-level approximation the Kramers - Kronig relation
determining the RIC effect in rare-earth-doped fibers [23,24] gives the following expressions for
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the grating amplitudes:
δG = (σ

(s)
21 + σ

(s)
12 )ρS(0)δN2 ≡ Reg

k0δn =
4π2FL

2

λSn0
∆pdδN2 ≡ Img

(1)

where FL = (n0
2 + 2)/3 is the Lorentz factor; n0 is the unperturbed refractive index, σ(s)

21 and
σ
(s)
12 , are the emission and absorption cross-sections at optical signal wavelengths, ρS(r) is the

normalized radial distribution of the signal power; k0 = 2π/λS is the signal wave number in
vacuum; ∆pd = p2 −p1, p1 and p2 are the polarizabilities of the Yb-ions in the ground and excited
states, respectively. From Eqs. (1), the ratio between the phase and gain grating amplitudes is
fixed, since it is determined only by the operation wavelength λS and the polarizability difference
∆pd and does not depend on the operating powers:

κ ≡
Img(t, z)
Reg(t, z)

=
(2πFL)

2

λS[n0(σ
(s)
21 + σ

(s)
12 )ρS(0)]

∆pd (2)

It is a specific feature of the dynamical gratings inscribed through the population inversion
mechanism. The polarizability difference ∆pd measured for Yb-doped fibers gives κ = 2.7 at
λS ∼ 1060 nm[23].

When the optical signal waves propagate through the fiber amplifier their amplitudes are changed
due to optical gain G(z) and interaction with the PIDG g(t, z). The equations describing the
propagation of optical signals are derived in the Appendix A. The amplified optical waves always
interact with the PIDG g(t, z) they inscribe, since the Bragg conditions [17], ∆ωS ≡ ω+S−ω

−
S=Ω,

β+S+β
−
S=qS are always satisfied. The process of grating inscription is governed by the set of rate

equations derived in Appendix B. A self-consistent set of equations describing the Brillouin-like
amplification in the rare-earth-doped fibers reads as:(︃

β1
∂

∂t
+
∂

∂z

)︃
e+S=

(1 − iκ)
2

(Λe+S+ge−S ) + iκWSe+S(︃
β1
∂

∂t
−
∂

∂z

)︃
e−S=

(1 − iκ)
2

(Λe−S+g∗e+S ) + iκWSe−S

τG
dΛ
dt
=

WPpP − (pP + 1)WS

(pP + pS + 1)
− Λ

τG
dg
dt
= −(1 + i∆ωτG)g −

Λ

(pp + ps + 1)
e+S e−∗S

n0
c
∂p±P
∂t

±
∂p±P
∂z
= s(Λ +WS)p±P−αPp±P

(3)

where τG = T/(pP + pS + 1) is the local population inversion rise time, eS = E±
S /
√

PS0,
p±P=P±

P/PP0, p±S=E±
S E±∗

S /PS0, pP,S = p+P,S+p−P,S, are optical fields and powers normalized to
the corresponding saturation powers PS0 and PP0; Λ ≡ G − WS is the net gain factor; WP
and WS are the stimulated transition rates between the ground and excited states for ωP and
signal ω±

S frequencies, respectively; T is the rare-earth ion lifetime, s = PS0ωP/PP0ω
±
S , κ is the

ratio between amplitudes of the phase and amplitude gratings (determined by the polarizability
difference [23]).

In Eqs. (3), the first two equations describe propagation of two optical monochromatic
waves through the fiber. In these two equations the first terms in brackets are responsible for
amplification of the signals through the population inversion mechanism. The second terms
describe interactions of the signal waves with the backward waves through the dynamical grating.
The latter terms are similar to the corresponding terms in Brillouin equations and are responsible
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for the Brillouin-like effect. The third equation describes the optical gain factor provided by
the population inversion mechanism in the fiber. One can see that the rise time function τG
determined by the Yb-ion lifetime T and all operating powers sets a pace to all transition processes
in the system. Also, the function τG characterizes the local lifetime of dynamical grating governed
by the fourth equation. One can see that, in contrast to the stationary fiber Bragg grating [27–29],
the dynamical grating exists in the fiber only when the fiber is exposed to the interference pattern.
Once exposure is terminated (or the interference pattern is shifted), the grating amplitude decays
exponentially with the characteristic time τG referred to as the local grating lifetime. Specifically,
for PIDG, the grating lifetime τG decreases with an increase of the operating powers. In this
sense, higher operating powers support faster erase of the grating. One can see that the dynamical
grating inscribed by the counterpropagating waves of equal frequencies (∆ω = 0) is stationary
(its position is fixed). Otherwise (∆ω ≠ 0), the interference pattern moves through the fiber in
positive (if ∆ω>0) or negative (if ∆ω>0) direction with the velocity V ≈ c∆ω/2ω̃n inscribing
the moving gratings. The moving gratings could be thought as a permanent process of the grating
re-inscription: each time a new grating is inscribed at a new position, while the previous grating
is erased. In these terms, the efficiency of the grating inscription (i.e., the grating amplitude)
depends on the grating velocity V in relation to the grating period ∼πc/ω̃n divided by the grating
lifetime τG. Inscription is most efficient for the stationary gratings (V = 0, ∆ω = 0) and becomes
weak at ∆ωτG ∼ π, when the interference pattern is shifted by a half of the grating period for
the grating lifetime. The last two equations in Eq. (3) are common equations from the two-level
laser model [26,30] describing the dynamics of the pump powers. This dynamics has a minor
effect on the Brillouin-like amplification but may complicate its observation. It is for this reason,
an Yb-doped double-clad fiber possessing trivial pump dynamics is select here for numerical
demonstration.

For steady-state power distributions over the fiber Eq. (3) is reduced to:

∂

∂z
ln p±S= ± Λ

[︃
1 −
τG
T

1
1 + (∆ωτG)2

p−S±
τG
T

κ∆ωτG

1 + (∆ωτG)2
p−S

]︃
(4)

providing the steady-state net gain Λ and the grating local lifetime τG as:

Λ =
WPpP − (pP + 1)WS

(pP + pS + 1)
τG
T
=

1
(pP + pS + 1)

(5)

3. Simulation results and discussion

In Eq. (4) the first term in the brackets is responsible for signal amplification through the population
inversion mechanism. The second term describes a decrease of the gain due to the hole burning
effect [31]. Its origin is the deconstructive interference of the wave passed through the grating
and another wave reflected by the grating. The third term highlights the Brillouin-like effect, i.e.,
the effect of power transfer from one monochromatic wave to another through the interaction
with the dynamical grating these two waves inscribe. Figure 3 shows the total gain spectrum
decomposed into these three contributions at a fixed fiber point. The first mechanism does not
depend on the frequency difference ∆ωS. It dominates at ∆ωS = ∞ when the contribution of two
other mechanisms is negligible. The second mechanism (hole burning) is the most pronounced
at ∆ωS = 0 when the recorded dynamic grating is static (its velocity V = c/2n ∆ωS/ωS → 0)
and the grating amplitude is maximal. In this case, the amplified wave and the optical wave
reflected from the dynamic grating are strictly in antiphase and their coherent annihilation causes
a decrease of the net amplification. The effect is symmetrical in respect to ∆ωS and, therefore,
similarly influences both waves. With an increase of |∆ωS |>0, the velocity of the moving grating
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increases and the grating amplitude decreases leading to mitigation of the hole burning effect. The
effect described by the third term is caused by a phase part of the population inversion dynamic
grating and is proportional to κ. It is asymmetrical in respect to ∆ωS, i.e., the wave possessing
higher frequency is always amplified at the expense of the wave possessing lower frequency.
Similar to the SBS, the same gain (nonlinear loss) factor is responsible for the gain experienced
by one wave and the nonlinear losses experienced by the second wave. Similar to SBS, the gain
(nonlinear loss) increment of one wave is proportional to the power of the second wave. The
effect is negligible in the limit cases of ∆ωS = ∞ and ∆ωS = 0, and is more pronounced at
∆ωSτG ∼ 1. The combined action of all three mechanisms leads to a characteristic gain spectrum
exhibiting resonant and anti-resonant peaks. The maximal and minimal gain frequencies are
determined by ∆ωS maxτG =

(︂
1 +

√
1 + κ2

)︂
/κ and ∆ωS minτG =

(︂
−1 +

√
1 + κ2

)︂
/κ, respectively.

Fig. 3. Local gain spectrum for p+ (curve 1). Contributions of terms in the brackets of
Eq. (5): the first term responsible for uniform signal amplification due to the population
inversion (curve 2); the first term and second term responsible for the hole burning effect
(curve 3); the first term and the third term responsible for the Brillouin-like effect (curve 4).
p+S τG/T = 0.3 is taken for calculation.

The steady-state solution described by Eq. (4) (combined with Eq. (5) and last two equations
in Eqs. (3) omitting derivatives in time) highlights the effect of the Brillouin-like amplification.
The solution for a 25-cm-length Yb-doped fiber length has been obtained numerically using
the Runge-Kutta algorithm. The boundary conditions are P+S (0) = P+Sin; P−

S (L) = P−
Sin;P+P(0) =

P−
P(0) = PPin/2, where P+Sin, P−

Sin, PPin are the signal and pump input powers. The specific
double-clad Yb-doped fiber parameters used in simulations are listed in Table 1.

Figure 4(a) shows typical steady-state power distributions of the interacting waves along the
fiber at different values of ∆ωS. The pump power is PPin = 1.5W and the optical signal inputs
are P+Sin=P−

Sin=1mW. The curves calculated at ∆ωS = ∞ describe the amplification of optical
signals through the population inversion mechanism in the rare-earth optical amplifier. The coun-
terpropagating optical signals experience amplification independently without mutual interaction.
Thanks to symmetry of the setup and two-side pumping both optical signals starting from the
same input power acquire the same total amplification equal to P+S (L)/P

+
Sin=P−

S (0)/P
−
Sin=100.

Comparing the curves obtained at ∆ωS = 0 and ∆ωS = ∞ one can see the hole-burning effect.
The net amplification achieved at ∆ωS = 0 is ∼1.2 times lower (factor A) than that obtained in the
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Table 1. Parameters of the Yb-doped fiber amplifier used for calculations

Symbol Quantity Value

λP Pump wavelength 975 nm

λS Optical signal wavelength 1060 nm

σ
(p)
12 Effective pump absorption cross sections 2.69 · 10−24m2

σ
(p)
21 Effective pump emission cross sections 2.97 · 10−24m2

σ
(s)
12 Effective signal absorption cross sections 4.6 · 10−27m2

σ
(s)
21 Effective signal emission cross sections 3.0 · 10−25cm2

NYb Concentration of Yb ions in the fiber core 10.4 · 1019

rP Radius of the fiber inner cladding 65 · 10−6 m

rS Radius of the fiber core 2.5 · 10−6 m

T Yb-ion lifetime in the excited state 0.85 · 10−3 s

∆pd Polarizability difference 1.2 · 10−32cm3

FL Lorentz factor 1.42

κ Ratio of phase and gain grating amplitudes 2.68

case of independent amplification of two waves (∆ωS = ∞). Both curves exhibit strong symmetry
in respect to the midpoint of the fiber and P+S (L)/P

+
Sin=P−

S (0)/P
−
Sin=81.3. A comparison of the

curves obtained at ∆ωS = 0 and ∆ωS/2π = 3.2kHz (∆ωSτG is within the range of ∼1.2-2.7 over
the fiber length) highlights the Brillouin-like effect providing stronger amplification to the wave
possessing higher frequency at expense of the wave possessing lower frequency. One can see
that the output power of the signal at higher frequency is 1.53 times higher than its output power
without interaction (at ∆ωS = ∞) (factor B) and it is 4.25 times higher than the output power of
the signal at lower frequency (factor C). The factors A, B, and C are introduced here as numbers
characterizing efficiency of the hole-burning effect (factor A), the Brillouin-like amplification
effect (factor C), and superposition of them (factor B). In fact, ln A, ln C, and ln B are expressed
as integrals of the second, third, and sum of second and third terms of the Eq. (4) over the fiber
length, respectively. The factor A is equal to the inverted factor B taken at ∆ωS = 0.

Fig. 4. Steady-state solutions of Eq. (4) for the 25-cm-length pumped fiber. (a) Distributions
of the optical signal powers P+S (z) (blue), P−

S (z) (red) and τg(z) (black) along the fiber at
∆ωS = 3.2 kHz;0 and ∞ (curves 1-3), PPin = 1.5W and P+S (0) = P−

S (L) = 1 mW. (b) The
signal amplification coefficients P+S (L)/P

+
S (0) (blue curves) and P−

S (0)/P
−
S (L) (red curves)

as functions of the frequency difference ∆ωS at P+S (0) = P−
S (L) = 1 mW and different pump

powers PPin = 0.5 W; 3 W (curves 1, 2); curve 2* shows the asymptotic level of curve 2 at
∆ωS → ∞.
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Figure 4(b) shows the net amplification achieved for two counterpropagating optical signal
as a function of the frequency difference ∆ωS. One can see that with two-side pumping at
PPin = 0.5W it exhibits an asymmetric profile with the maximum at 0.7kHz and minimum
at −0.5kHz. The resonance peaks are less pronounced than those shown in Fig. 3 due to an
inhomogeneous broadening associated with nonuniform distribution of the grating relaxation
time τG(z) over the fiber length shown in Fig. 4(a). However, the key features predicted by the
Eqs. (4) are still pronounced. In particular, the positions of spectrum peaks agree with their
estimations ∆ωSMaxτ̃G ∼ 1.4 and ∆ωSMinτ̃G ∼ −0.6 from Eq. (4) at κ = 2.7 in such a sense that
the corresponding values τ̃G always occurs within the range the τG(z) changes over the fiber
length. With an increase of the pump power from PPin = 0.5W to PPin = 3W the maximum peak
resonant frequency shifts from 0.7kHz to 2kHz and the minimum peak resonant frequency shifts
from −0.5kHz to −1.6kHz. These shifts are accompanied by an increase of the peak amplification
P+S (L)/P

+
Sin from 41 to 342 and an increase of the factors B and C from 1.45 to 1.7 and from 3.7

to 11.8, respectively, while the factor A remains at the level of 1.22.
From Fig. 4(b) one can conclude that the power exchange between counterpropagating signals

occurs from the wave of lower frequency to the wave of higher frequency. It makes the effect
different from Brillouin scattering where the wave at higher frequency commonly donates
power to the wave at lower frequency. Formally, this difference can be explained in terms of
the sign of refractive index modulation δn(t, z) induced by the interference pattern I(t, z) of
the interacting signal waves that defines a direction of the energy transfer. The interaction
between the counterpropagating optical waves through the modulation δn(t, z) is described by
Eq. (11) (see, Appendix A). It does not concretize the mechanism of the modulation δn(t, z)
and, in this sense, is common for BDG and PIDG. In the case of the Brillouin amplification,
the acoustic waves (i.e., the waves of density) are produced through the electrostriction effect
[5,19,20]: the interference pattern I(t, z) modulates the density forming the acoustic wave
amplitude ξ(t, z) ∼ γI(t, z). In its tune the acoustic wave amplitude ξ(t, z) modulates the refractive
index δn(t, z) ∼ γξ(t, z). Importantly both processes are governed by the same electrostrictive
coupling constant γ = ξ0∂ε/∂ξ, where ε is the dielectric constant and ξ0 is the media density.
Therefore, the effect of I(t, z) on the refractive index δn(t, z) ∼ γ2I(t, z) governed by γ2 is always
positive. In contrast, similar exposure I(t, z) in the pumped rare-earth doped fibers reduces the
population inversion δg(t, z) ∼ −I(t, z), whereas δn(t, z) ∼ g(t, z) is still positive. So, for the BDG
δn(t, z) ∼ I(t, z), but for the PIDG in a pumped rare-earth-doped fiber δn(t, z) ∼ −I(t, z). The
power transfer from the wave at higher frequency to the wave at lower frequency is still available
with unpumped rare-earth-doped fibers. Indeed, P+P0=P−

P0=0 for the unpumped fibers and the
function Λ<0 in Eqs. (4), (5). In Eq. (4) the Brillouin-like effect is still described by the third
term in brackets, while the second term at Λ<0 describes the induced transparency. It is worth
noting that the energy conservation law predetermines this formalism. Indeed, in the case of
Brillouin scattering, the BDG loses the energy and should be fed by the optical fields. So, the
optical domain has to produce the energy converting the light from higher to lower frequency. In
the case of PIDG in the pumped fibers, the situation is the opposite. The energy is taken from the
population inversion and transferred to the optical domain to increase the grating contrast. So,
the optical domain has to spend energy converting the light from lower to a higher frequency.
The situation reverses in the case of unpumped fiber.

The similar steady-state solutions shown in Fig. 5 describe the effect of the Brillouin-like
amplification in a 1-m-length of unpumped Yb-doped fiber. Figure 5(a) shows typical steady-state
power distributions of the interacting waves along the fiber at different values of ∆ω. The powers
of the input optical signals are P+Sin=P−

Sin=30mW. The curves calculated at ∆ω = ∞ describe the
transmission of optical signals through the optical amplifier. The observed power absorption
occurs independently for two signals due to interaction with Yb-ions in a ground state. Thanks to
symmetry of the setup both optical signals starting from the same input power lose the same
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power getting the total transition equal to P+S (L)/P
+
Sin=P−

S (0)/P
−
Sin=0.72. Comparing the curves

obtained at ∆ωS = 0 and ∆ωS = ∞ one can see the effect of the induced transparency. The net
transmission achieved at ∆ωS = 0 ∆ωSτG is ∼1.05 times higher (factor A) than that obtained in
the case of independent propagation of two waves (∆ωS = ∞). Similar to Fig. 4(a), both curves
exhibit strong symmetry in respect to the midpoint of the fiber and P+S (L)/P

+
Sin=P−

S (0)/P
−
Sin=0.75.

Comparison of the curves obtained at ∆ωS = 0 and ∆ωS/2π = 1.5kHz (is within the range of
∼1.7-1.8 over the fiber length) highlights the Brillouin-like effect providing amplification to the
wave at lower frequency at expense of the wave at high frequency. One can see that the output
power of the signal at lower frequency is 1.13 times higher than its output power without mutual
interaction (at ∆ωS = ∞) (factor B) and it is 1.27 times higher than the output power of the
signal at higher frequency (factor C). Here, the factors A, B and C characterize the efficiency of
the induced transparency (factor A), the Brillouin-like amplification (factor B) and asymmetry
of the transmission spectrum (factor C). One can see that with the simulation parameters used
and selected ∆ωS/2π = 1.5kHz, the Brillouin-like amplification is rather weak to compensate
completely the optical signal losses in the fiber. However, the effect could be enhanced with a
proper selection of ∆ωS and increase of the backward wave power.

Fig. 5. Steady-state solutions of Eq. (4) for the 1-m-length unpumped fiber. (a) Distributions
of the optical signal powers P+S (z) (blue), P−

S (z) (red) and τg(z) (black) along the fiber at
∆ωS = 1.5 kHz;0 and ∞ (curves 1-3) and P+S (0) = P−

S (L) = 30 mW, PPin = 0. (b) The
signal transmission P+S (L)/P

+
S (0) (blue curves) and P−

S (0)/P
−
S (L) (red curves) as functions

of the frequency difference ∆ωS at P+S (0) = P−
S (L) = 5 mW;30mW (curves 1,2) and

P+S (0) = 150mW, P−
S (L) = 1mW (curve 3).

Figure 5(b) shows the net transmission achieved for two counterpropagating optical signals as a
function of the frequency difference ∆ωS. One can see that the transmission of one wave depends
on the frequency difference ∆ωS and power of the second wave. With an increase of the second
wave power from 5 to 150mW the resonant frequency difference shifts from −0.13Hz to −1.3kHz
and the peak transmittance for the primary wave increases from 44% to 106%. Thus, the increase
of the wave power of lower frequency occurs at expense of the wave power of higher frequency
making the effect even more similar to stimulated Brillouin scattering. It is explained by the fact
that in the unpumped (Λ<0) rare-earth doped fibers the interference pattern I(t, z) produced by
a pair of interacting waves increases the population inversion and, hence, the refractive index
in fiber points exposed to higher intensity. So, for the population inversion grating in this case
δn(t, z) ∼ I(t, z), like in the traditional SBS.

Finally, we have performed numerical simulations of the temporal-spatial differential Eq. (3)
to explore the formation of the dynamical grating in the pumped rare-earth-doped fiber and
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to analyze evolution of the optical signals to the steady-state solution (Eq. (4)). The fourth-
order Runge–Kutta algorithm has been adapted for this purpose. The used initial and boundary
conditions are P+P(0, z) = P−

P(0, z) = PPin/2; P+S (0, z) = P−
S (0, z) = 0; P+P(t, 0) = P−

P(t, L) = PPin/2,
P+S (t, 0) = P+Sin; P+S (t, L) = P−

Sin. The phases of the input optical signals are constants. The results
of this simulations at ∆ωS = 0 and ∆ωS = 3.2 kHz are compared in Fig. 6(a) and (b), respectively.
We again consider a 25-cm-length Yb-doped fiber pumped by PPin = ∼1.5W from two sides. In
both cases, two monochromatic signals with the input powers of ∼1mW are introduced into the
fiber from the opposite fiber ends. At the moment of time t = 0, the forward front of the optical
signal wave gets the fiber output possessing the peak output power of ∼270mW determined by
the amplifier transient characteristics. The amplitude of the dynamical grating is close to zero,
since the process of the grating inscription is not started yet. Further evolution of the interacting
fields depends on the frequency difference ∆ωS. At ∆ωS = 0 an increase of the grating amplitude
caused by the interference pattern leads to suppression of net amplification in the fiber due
to hole-burning effect. The output powers of both optical signals decrease down to ∼81mW
that is by ∼ 15mW lower than the steady-state output power at ∆ωS = ∞ (see, dashed line for
comparison). The typical time of the grating evolution to the steady-state is ∼0.1ms. One can
see that the phase of the grating complex amplitude arg g(t, z) monotonically changes over the
fiber length due to additional phase shift acquired (through the RIC effect) by the interacting
signals V ≈ c∆ωS/2ω̃Sn ∼ 1.13cm/s during amplification. Importantly, the profile arg g(t, z)
does not change in time at ∆ωS = 0. At ∆ωS = 3.2kHz the behavior of the interacting fields is
qualitatively different. The dynamical grating is inscribed by the moving interference pattern
with the velocity estimated as . In comparison with Fig. 6(a), this feature is reflected in a lower
steady-state grating amplitude and longer time of transition to steady-state with recognized
re-oscillations shown in the graph of max |g(z)|(t). The profile arg g(t, z) still possesses the
monotonic change with the fiber length, but also performs weak relaxing perturbations in time
of the grating velocity. The dynamical grating moving along the fiber in the positive direction
breaks the symmetry and provides preferable amplification of the wave of higher frequency.
The steady-state output powers are ∼36mW and ∼154mW for the lower and higher frequency
waves, respectively. The steady-state distribution arg g(z) is steeper than the similar distribution
at ∆ωS = 0. The steady-state solution is well described by Eq. (4).

Fig. 6. Evolution of the optical signal powers calculated from Eq. (1) for the 25-cm-length
pumped fiber at ∆ωS = 0 (a) and ∆ωS = 3.2 kHz (b). Pump power is PPin = 1.5 W, input
signal powers are P+S (0, t) = P−

S (0, t) = 1mW, t>0.
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4. Conclusion

In conclusion, we have described the interaction of two counterpropagating monochromatic
waves in a doped optical fiber amplifier demonstrating a strong power transfer from one wave
to another. The phenomenon is explained as a reverse effect of the PIDG inscribed by the
counterpropagating optical waves in the active fiber. A self-consistent set of equations enabling
description of a number of effects governed by the population inversion mechanism, like an
optical gain, hole-burning, population inversion grating, laser frequency self-scanning, and so
on, is derived and applied to demonstrate the Brillouin-like amplification in rare-earth doped
fibers. We have shown that the propagation of the monochromatic wave through the active fiber
could provide the wave propagating in the backward direction with an additional gain shifted
in frequency by some value in the kHz range. The effect is demonstrated for the configuration
of a bidirectional rare-earth-doped optical fiber amplifier. We have shown that in contrast to
SBS, the power transfer in the rare-earth-doped fibers could occur either to the wave with higher
(anti-Stokes) or lower (Stokes) frequency. Anti-Stokes wave amplification is dominating in the
pumped fibers, while amplification of the Stokes wave can occur in fibers without pumping.
We believe that the reported Brillouin-like effect could be employed in many new photonics
devices expanding the range of the traditional Brillouin applications (fiber lasers, microwave
photonics, distributed sensors, spectrometry) to the sub-kHz frequency domain. Similar to SBS,
the reported narrowband amplitude response is accompanied by a strong dispersive response,
able to tailor the phase or group delay of a backward optical signal. In light of these effects, the
Brillouin-like amplification could enrich the advanced Brillouin applications such as slow light
[32], stored light [33], narrowband RF photonic filters [34], optical processing [4], distributed
sensing [35–37], narrowband spectrometers [38], optical amplifiers [39], narrow linewidth,
spectrally pure RF sources [40,41] among others. New mechanisms are important as well for
designers of the Brillouin and random fiber lasers [42–54] demanded in many applications in
microwave photonics, data centers and atomic clocks. Translating the fiber system design to
integrated photonics could dramatically reduce the footprint for many these applications.

Appendix

A. Propagation equations for optical waves

The light propagation equation in a rare-earth-doped fiber is derived first. The electric field E is
described as [17]:

∇2E −
1
c2
∂2

∂t2
n2E = 0 (6)

where n is the complex refractive index expressed as:

n =
[︂
n0 − i

α0

k0

]︂
+

[︃
δn − i

δα

k0

]︃
(7)

where n0 and α0 are the refractive index and absorption coefficient of unperturbed fiber, δn and
δα are the perturbations of the refractive index and absorption coefficient induced by an external
pumping of the fiber and interfering optical signals, k0 = 2π/λS = ωS/c is the wave number in
vacuum, λS and ωS are the wavelength in vacuum and optical wave frequency.

Under the condition α0
n0k0 <<1 underlying the existence of optical wave from Eq. (7):

n2 = n0
2 + 2n0

(︃
δn − i

(α0 + δα)

k0

)︃
(8)

In a single-mode optical fiber approach [17,27,28], two counterpropagating optical signals
with the mode propagation constants β+ ≈ β+ ≈ ω±n0/c, and the angular oscillation frequency
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ω+, ω− are described as a superposition:

ES = F(x, y){E+S (t, z)e
i(ω+S t−β+S z) + E−

S (t, z)e
i(ω−

S t+β−
S z) + c.c.} (9)

where F(x, y) is the modal distribution over the fiber cross-section defined from:(︃
∂2

∂x2 +
∂2

∂y2

)︃
F(x, y) + [(k0n0)

2
− (β±)

2
]F(x, y) = 0 (10)

Substituting Eqs. (9), (8) and (10) into Eq. (6), it is reduced to:(︃
β1
∂

∂t
+
∂

∂z
+ α0

)︃
E+S ei(ω+S t−β+S z) +

(︃
β1
∂

∂t
−
∂

∂z
+ α0

)︃
E−

S ei(ω−
S t+β−

S z)

= −

[︃{︃
2
c
∂

∂t

(︃
δn − i

δα

k0

)︃
+ (ik0δn + δα)

}︃
[E+S ei(ω+S t−β+S z) + E−

S ei(ω−
S t+β−

S z)]

]︃ (11)

where β1 = dβ±S /dω ≈ n0/c is the group velocity dispersion (GVD). We can simplify Eq. (11)
using ∂/∂tδn<<ω0δn , ∂/∂tδα<<ω0δα . Besides, the perturbations of the refractive index
δn and absorption coefficient δα in Eq. (6) have to be taken into account for two kinds of
contributions. The first contribution is associated with the population inversion local gain factor
G(t, z) induced in the fiber by an external pumping, the second is due to the PIDG δG(t, z)
inscribed by two counterpropagating waves. Since both kinds of contributions are governed by
the population inversion mechanism, δα and δn are strongly linked through the RIC effect (see
Eq. (1)). The resulting expressions are k0δn = κ(G + δG)/2, δα = −(G + δG)/2, where κ is
defined in Eq. (2). Finally, the light propagation equation in an active fiber reads as(︃

β1
∂

∂t
+
∂

∂z
+ α0

)︃
E+S ei(ω+S t−β+S z) +

(︃
β1
∂

∂t
−
∂

∂z
+ α0

)︃
E−

S ei(ω−
S t+β−

S z) =

=
(1 − iκ)

2
(G + δG)(E+S ei(ω+S t−β+S z) + E−

S ei(ω−
S t+β−

S z))

(12)

B. Rate equations for the Gain and Dynamical Gain Gratings

In order to derive equations for the gain and dynamical gain gratings, we start from the standard
set of rate equations describing dynamics of the population inversion induced by an external
diode pumping and optical signal powers. The model for an effective two-level Yb-doped fiber
system (provided that only the fiber core is doped) reads [25]:

dN2(z)
dt

=

(︃
σ
(p)
12 ρP(0)

PP(z)
hνP

+ σ
(s)
12 ρS(0)

PS(z)
hνS

)︃
N

−

(︃
(σ

(p)
21 + σ

(p)
12 )ρP(0)

PP(z)
hνP

+ (σ
(s)
21 + σ

(s)
12 )ρS(0)

PS(z)
hνS

+
1
T

)︃
N2(z)

dPP(z)
dz

= (σ
(p)
21 + σ

(p)
12 )ρP(0)PP(z)N2(z) − σ(p)

12 ρP(0)NPP(z)

dPS(z)
dz

= (σ
(s)
21 + σ

(s)
12 )ρS(0)PS(z)N2(z) − σ(s)

12 ρS(0)NPS(z)

(13)

Here, PP and PS are local powers of pump and signal waves with the frequencies νP and νS,
respectively, at the point z along the fiber length; σ(p)

12 and σ(p)
21 are the effective pump absorption

and emission cross sections, σ(s)
12 and σ(s)

21 are the corresponding values for the signal wavelength,
N = 2π

∫
n(r)rdr and N2 = 2π

∫
n2(r)rdr are the total numbers of all and excited ions integrated

over the fiber mode cross-section, respectively;ρP(r) and ρS(r) are the normalized pump and
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signal power distributions through the fiber cross-section, so that 2π
∫
ρP,S(r)rdr = 1; T is the

ion excited state life time. For simplicity, we assume the δ-like distribution of the active ions
over the fiber cross-section, so NρS(0) = NYb, where NYb is the concentration of the Yb-ions in
the fiber core in accordance with the fiber specification list.

Comparing Eqs. (12) with (13) one can see that

G + δG = (σ
(s)
21 + σ

(s)
12 )ρS(0)N2(x) ≡ GT (14)

The expression for PP in Eq. (13) could be rewritten for the case of two-side pumping as:

β1
∂PP

±(z)
∂t

±
∂PP

±(z)
∂z

=
Ps0
Pp0

νP
νS

GTPP
±−αpPP

± (15)

where αp = σ
(p)
12 ρP(0)N, PP0, PS0 are the pump and signal saturation powers defined as

Pp0 =
hνp

T(σ(p)
21 + σ

(p)
12 )ρP(0)

; Ps0 =
hνs

T(σ(s)
21 + σ

(s)
12 )ρS(0)

We can introduce the stimulated transition rates [30] between the ground and excited states:

Wp = Nσ(p)
12 ρS(0)

(σ
(s)
21 + σ

(s)
12 )

(σ
(p)
21 + σ

(p)
12 )

; Ws = Nσ(s)
12 ρS(0) (16)

Now, the first equation in Eq. (13) could be rewritten in these terms:

T
dGT

dt
=

(︃
Wp

PP

PP0
+Ws

PS

PS0

)︃
−

(︃
PP

PP0
+

PS

PS0
+ 1

)︃
GT (17)

where PP ≡ PP
++PP

−; P+S=E+S E+∗S ; P−
S=E−

S E−∗
S ; qS = β

+
S+β

−
S ; ∆ωS = ω

+
S−ω

−
S and

PS = ESES
∗=P+S+P−

S+E+S E−∗
S exp(i(∆ωSt − qSz)) + E+∗S E−

S exp(−i(∆ωSt − qSz)) (18)

Equation (18) allows us to separate contributions to GT (t, z) associated with an external
pumping and amplification of two counterpropagating waves.

Since GT (t, z) is totally real, it can be expressed as:

GT = G + g exp (i(∆ωSt − qSz)) + g∗exp(−i(∆ωSt − qSz)) (19)

where G is the optical gain provided by an external pumping and g is the complex amplitude
of the population inversion dynamical grating with the spatial period of 2π/|qS |. Substituting
Eq. (19) into (17), we split Eq. (17) into equations describing the optical gain and gain grating:

T
dG
dt
=

(︃
Wp

PP

PP0
+Ws

PS

PS0

)︃
−

(︃
PP

PP0
+

PS

PS0
+ 1

)︃
G −

g∗E+S E−
S
∗ + gE+S

∗E−
S

PS0

T
dg
dt
= −

[︃(︃
PP

PP0
+

PS

PS0
+ 1 + i∆ωST

)︃
g + (G − Ws)

E+S E−
S
∗

PS0

]︃ (20)

A self-consistent set of equations Eqs. (3) enabling description of multiple effects (an optical
gain, hole-burning, population inversion grating, laser frequency self-scanning) associated with
the population inversion mechanism is a combination of Eqs. (12), (19) and (20).
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