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We propose a mechanism enabling amplification of the surface tunneling modes propagating over the semiconduc-
tor cylinder surface pumped by a direct current. Amplification of a whispering-gallery mode with a net gain as high
as 103 cm−1 is demonstrated. © 2020 Optical Society of America
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1. INTRODUCTION

Currently, integration of silicon electronics and photonic
devices based on AIIIBV semiconductors (gallium arsenide,
indium phosphide, etc.) is among the new challenges addressed
to optoelectronic engineers. However, such integration is quite
costly or even impossible if only traditional tools and pure semi-
conductor laser techniques are exploited [1,2]. The emergence
of silicon-based optical generators and amplifiers pumped by
a direct current (DC) may accelerate progress in hybridiza-
tion of direct and indirect gap materials. Fabrication of such
sources will open up a potential route to the appearance of a
new class of integrated optoelectronic devices. Integration of
optical and electrical elements in such devices is attainable with
the techniques underlying the production of semiconductor
microchips [3].

For the last decade, the use of indirect gap semiconductors as
an active laser media has been on the agenda of laser engineer-
ing. However, mainly Raman and Brillouin optical parametric
generators have been considered in this context [4–9], including
a Brillouin-based mode-locked laser, microwave generator,
optical gyroscope, and narrowband silicon laser integrated
into an optical silicon microchip [10]. Now, silicon-based laser
amplifiers and generators have become emerging components of
optoelectronics and integrated laser technology. In this context,
design of optical amplifiers and generators driven by a direct
current is of great practical importance.

In this paper, we explore the potential of n-type silicon cylin-
der doped with phosphorus or arsenic and pumped by a direct

current demonstrating its operation as an efficient optical (near-
IR) amplifier. The net gain higher than 103 cm−1 is achieved
with this structure as a whispering-gallery mode (WGM) at the
wavelength λ= 1.55− 1.58 µm is used as an amplified optical
signal.

2. BASIC EQUATIONS

The mechanism of optical amplification considered in this
work is similar to the operational principle of the traveling wave
tube (TWT) commonly used in the microwave technique [11].
To provide an effective interaction between the optical light
and drift current, one has to match the phase velocity of the
amplified optical wave and velocity of the current carriers. To
get this matching the amplified optical wave has to be somehow
slowed down. Direct current amplification of surface plasmon
polaritons in nanostructures has been discussed in [12–19]. The
mathematical model used here is very similar to that used previ-
ously. In particular, it has already been applied to describe SPP
amplification in an ultrathin semiconductor film and in carbon
nanotube pumped by a drift current reported in Refs. [12,13],
respectively. Specifically, in new consideration a radius of the
cylinder is much larger than the wavelength, and therefore the
slowing down of the electromagnetic wave achievable in [12,13]
cannot be obtained. In other words, phase matching between
collinear electromagnetic and current waves is not possible any-
more. Now, to satisfy the phase-matching condition the optical
wave makes a spiral trajectory while propagating through the
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Fig. 1. Scheme of light wave introduction into the cylinder:
(1) prism, (2) silicon cylinder, (3) input light, (4) optical surface wave.
ϑ is the angle of light introduction onto the cylinder surface.

cylinder and thus enables the energy transfer from current car-
riers to an electromagnetic wave. To the best of our knowledge,
such a process is considered here for the first time.

Let us consider an optical tunneling wave, like a WGM,
propagating over the surface of a dielectric cylinder. A surface
optical mode of the cylinder of a finite length is characterized by
longitudinal and transverse components of the electric (mag-
netic) fields [20] and may interact with the ordered electric
current carriers passed through the cylinder when the current
carrier velocity and optical wave phase velocity are matched.
In order to get such matching, the optical wave E should be
introduced onto the cylindrical surface at a certain angle to the
cylinder axis (Fig. 1).

In this case, it propagates over the cylinder surface on a spiral
trajectory (Fig. 2). The longitudinal component of the optical
propagation constant is defined as βz = (β

2
ξ − β

2
⊥
)1/2, where

βξ = n(ω)k0 is the propagation constant, β⊥ is the transverse
(radial) component of the propagation constant, k0 =ω/c is
the wave number in a vacuum, and n(ω) is the refractive index
(RI) of the cylinder. In this work, we assume that the cylinder
is made from silicon doped with phosphorus or arsenic and
n ≈ 3.4 [21].

Interaction of an optical wave with the moving current carri-
ers could be described by a set of two equations similar to those
known frommicrowave theory [22–25]. The first equation
describes an electromagnetic field induced by an alternative cur-
rent. The harmonic component of the induced electromagnetic
field at the frequency ω co-propagating with the considered
optical mode (WGM) could be expressed as

dE
dξ
+ i

ω

υph
E =−

1

2

(
ω

υph

)2

j ′K ξ sinϑ, (1)

where υph is the phase velocity of the electromagnetic wave;
j ′� I0 is the harmonic electrical current component at ω,
where I0 is the DC current component; and ξ is the coordi-
nate along the electromagnetic wave trajectory on the cylinder
surface.

Fig. 2. Silicon cylinder with an excited optical mode (WGM). An
arrow shows the current direction.

The elementary sections along the electromagnetic
wave trajectory and cylinder axis z are connected as
dξ ≈ sin ϑ−1dz≡ Ndz, where

N = 1/ sin ϑ = υph/υ0 = c/nυ0 (2)

is the velocity matching parameter, υ0 is the velocity of drift
current carriers, and ϑ is the angle of light input enabling cor-
responding to perfect matching of the optical wave phase and
current carrier velocities. The coupling coefficient K ξ in Eq. (1)
describes the efficiency of the interaction between the current
and optical surface wave and is defined as

K ξ =
〈|ETM,ξ |

2
〉

2β2
ξ P

=
〈|ETM,z|

2
〉

2β2
ξ P

sin2 ϑ, (3)

where ETM,ξ = ETM,z/N.
The quantities

P '
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8π

∫
∞

0
|E |2dS, (4)

υg = (∂βξ/∂ω)
−1
ω=ω0

, and |E |2 = |ETM|
2
+ |ETE|

2 are the
power, group velocity, and energy (TE and TM compo-
nents) of the optical wave, respectively. We can rewrite Eq. (3)
introducing 〈

|ETM|
2〉
=

1

Veff

∫
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0
|ETM|

2dV ,

where Veff = (1/|E0|
2)
∫
∞

0 |E (x , y , z)|2dV is the effective
optical mode (WGM) volume, d V is the elementary volume,
and E0 is the optical wave amplitude. The optical wave power
given by Eq. (4) is expressed as
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where S(1)eff is the effective optical mode (WGM) area.
Thus, with a high precision, the coupling coefficient from

Eq. (3) could be approximated as

K ξ ≈
4πη2

υg n2β2
ξ S(1)eff

sin2 ϑ, (6)

where

η=
〈|ETM,z|

2
〉

〈|ETM|
2
+ |ETE|

2
〉

is a fraction of the TM mode power averaged over time.
The second equation [16,22–25] in the set [i.e., solved in

combination with Eq. (1)] describes the alternating current
induced by the electromagnetic field. The harmonic component
of the current at the frequency ω uniformly propagating along
the cylinder could be expressed as

d2j ′

dξ 2
+ 2iβe ξ

dj′

dξ
−
(
β2

e ξ − β
2
p

)
j ′ = i

eβeξ sin ϑ

m∗effυ
2
0

E
∫

j0dS,

(7)
where βeξ = βe sin ϑ , βe =ω/υ0 (the matching conditions),
βp =ωp/υ0,

∫
j0dS = I0, E is the amplitude of the optical field

(WGM), and e and m∗eff are the charge and effective mass of the
current carriers.

Now we assume that both the current fluctuation and optical
mode (WGM) field vary along the waveguide length propor-
tionally to exp(−ikξ). In this case, solving the set of Eqs. (1)
and (7) gives the following dispersion equation, similar to that
reported for TWT [11,12]:

(ω− kυph)
[
(ω− kυ0/ sin ϑ)2 −ω2

p

]
=C 3ω3, (8)

where

C 3
= K ξ

ω2
p S(2)eff

8πυph
sin(θ)≈
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ω2
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and ωp =
√

4πn0e 2/m∗effn
2 is the plasma frequency. In Eq. (9)

we have assumed a uniform distribution of the current density
over the cylinder cross section

I0 = e
∫
∞

0
n0υ0dS ≈ en0υ0S(2)eff ,

where S(2)eff = πD2/4 is the cylinder base area and D is the cylin-
der diameter.

With the optical wave frequency ω= 2πc/λ�ωp lying
in the near-IR spectrum range, Eq. (8) describes an increase
of the optical wave field along the coordinate ξ with the gain
increment

αξ = Im(k)=

√
3

2

ω

υph
C . (10)

Correspondingly, the gain increment describing optical wave
amplification along coordinate z is

αz =

√
3

2
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υph
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√
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2
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, (11)

where we put S(1)eff ≈ S(2)eff .
On other hand, the decrement describing decay of the optical

wave along coordinate z isγ = β ′′/ sin ϑ (whereβ ′′ is the imagi-
nary part of the propagation constant). Therefore, the net gain
describing the increase of the optical wave amplitude along coor-
dinate z is

G = αz − γ ≈

√
3

2

(
η2n2ω2

pω

2υg c 2

)1/3

−
υph

υ0
β ′′. (12)

It is worth noting that the light absorption by free electrons is the
main source of losses in the silicon at 1.55µm [26].

With approximation υg ≈ υph ≈ c/n, β ′′ ≈ωκ/c , where κ
is the loss decrement in silicon, the net gain given by Eq. (12) is
reduced to

G ≈

√
3n
2

(
η2ω2

pω

2

)1/3

−
ωκ

υ0n
. (13)

One can see that the net gain expressed by Eq. (13) is the result
of competition between the gain increment and loss decrement.
Let us estimate the net gain achievable in the considered sili-
con structure. The typical velocity of drift current carriers in
semiconductors is υ0 max ≈ 107 cm/s. The electron mobility in
a n-type silicon with concentration of dopants (e.g., phospho-
rus) n0 ≈ 1017 cm−3 is estimated to be µn ≈ 103 cm2/(V · s)
[27]. In the non-saturating regime υ0 ≈µnU/l and the drift
current carrier velocity is connected with the applied voltage
to the cylinder faces U as U/l ≈ υ0/µn ≈ 104 V/cm. So the
applied voltage as low as U ≤ 100 V should be enough to get the
effect in the cylinder with a length l shorter than 0.1 mm. With
n0 ∼ 1017 cm−3 and the effective electron mass m∗eff ≈ 0.25me

[28], the plasma frequency is estimated to beωp ∼ 1013 s−1.
There are three parameters that could be adjusted to achieve

the maximal net gain. They are the angle of light input onto
the cylinder surface ϑ , the applied voltage U , and the cylinder
length l . One can check that even with a smallη∼ 0.1, very high
values of the net gain could be achieved atλ0 ∼ 1.55 µm:

G ≈

√
3CN
2

ω

υph
−
β ′′c
nυ0
≈

√
3n

2c

(
η2ω2

pω/2
)1/3
∼ 103 cm−1.

(14)
Figure 3 depicts the net gain as a function of the electron

concentration in a silicon waveguide calculated from Eq. (12)
for different fractions of the TM mode power η= 0.1 [Fig. 3(a)]
and η= 0.5 [Fig. 3(b)]. To perform these calculations the
function κ(n0) (see Fig. 3, inset) was estimated from the exper-
imental data for Si waveguides [26]. Note that the presence of
the dopants (As, Sb, P) of different concentration just changes
the number of carriers but does not affect the function profile
κ(n0), at least within the considered range of 1016

−1018 cm−3.
One can see from the inset to Fig. 3 that the function κ(n0) is
linear and all points relating to different dopants and their con-
centrations are lying on the same line. Within the range of the
carrier concentrations 1017

− 1018 cm−3, the net gain profile
G(n0) strongly depends on the velocity matching parameter N.
At small N [curves 1 and 2 in Figs. 3(a) and 3(b)], the function
G(n0) exhibits a peak at the point where the loss decrement
increasing with n0 starts to compensate gain. At high N (i.e., at
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Fig. 3. The net gain G(n0) as a function of electron concentra-
tion in the doped silicon cylinder calculated for different velocity
matching N. (a) Fraction of the TM mode power η= 0.1, N = 1000,
500, 200, 50 (curves 1–4); (b) fraction of the TM mode power
η= 0.5, N = 2500, 1000, 500, 50 (curves 1–4). Other parameters are
n= 3.4757 (λ= 1, 55 µm, T= 293 K, [21]), m∗eff = 0.25me . Yellow
inset: the loss decrement κ(n0) as a function of the carrier concentra-
tion n0 taken from the experimental data [26] for silicon with some
different dopants and their different concentrations.

small light input angle), the net gain falls down to zero and even
becomes negative [curve 1, Fig. 3(a) and 3(b)]. With a decrease
of N at high drift velocities, the slope of G(n0) also decreases
(curves 3 and 4). Comparison of Figs. 3(a) and 3(b) highlights
the polarization sensitivity of the system. An increase of the TM
mode power fraction η up to 0.5 causes a drastic increase of the
net gain [Fig. 3(b)] up to several thousand cm−1. Such huge
values of the net gain are quite attractive and make a new design
of the electrically driven silicon generators very promising.

It is worth noting that for β ′′ < 1 cm−1 with the velocity
matching parameter N = 1/sinϑ ≈ 103, the loss decrement
(along z) can be estimated as γ ≈ β ′′N < 103 cm−1 < G . So
the optical losses are lower than the net gain G even at a small η.
In this case, the amplifier is able to operate in a wide spectrum
range (>1 µm in the near IR). The operating wavelength is
tunable within this range through adjustment of the light input
angle (e.g., using a prism).

Therefore, in order to achieve the most effective amplifica-
tion in the silicon cylinder by a drift current, the concentration
of dopants in silicon waveguides should be optimized. On
the one hand, higher carrier concentration corresponds to a
higher plasma frequency, which, in its turn, leads to a higher

net gain G [see Eq. (12)]. On the other hand, an increase of
the carrier concentration decreases the charge mobility and
significantly increases the optical losses resulting in the loss
decrement exceeding the gain increment. For example, with
the dopant concentration of n0 ≈ 1018 cm−3, the losses in the
waveguide are pretty high, but the maximum drift velocity is
much lower than υ0 < 107 cm/s. On the other hand, for the
considered silicon structure with the concentration lower than
n0 < 1016 cm−3, a low plasma frequency provides a low gain
increment.

3. CONCLUSION

In summary, we have proposed a mechanism enabling amplifi-
cation of the surface tunneling modes as they propagate over the
surface of a silicon cylinder pumped by a direct electric current.
For the waves operating in the near-IR range, the acquired
optical gain increment could exceed the optical loss decrement,
resulting in a net gain G of∼103 cm−1.

It is worth noting that instead of pumping by the direct
current combined with the input angle adjustment through a
prism, one can use electrical pumping by the alternating cur-
rent I = I0[1+11cos(�t − q z)]. In this case the dielectric
constant (and hence refractive index) is modulated [29,30]
as ε= ε0[1+12cos(�t − q z)], and so matching between
the optical wave and drift carrier velocities could be achieved
through adjustment of the current frequency � as �/q ∼ υ0.
This method allows us to avoid mechanical adjustment of the
light input angle by the prism. In this context, generation of
the space charge waves (SCW) in a semiconductor cylinder can
also be employed. SCWs or spatiotemporal perturbations of
the charge density could arise in semiconductors with negative
differential mobility under conditions of strong electrical fields
[29,30]. The SCW propagation velocity is close to the carrier
drift velocity, so this effect is suitable for self-matching of the
surface optical wave and drift current.

Finally, generation of highly localized surface waves, such
as surface plasmon polaritons on the surface of the cylinder,
seems to be also promising for achieving ultrahigh net gain
G(z)� 103 cm−1, since the condition υg → 0 is supported
by the nature of plasmon polaritons [15,16]. However, it is well
beyond the scope of this paper.
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