AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

PLEASE NOTE: We cannot accept new source files as corrections for your article. If possible, please annotate the PDF proof we have sent you with your corrections and upload it via the Author Gateway. Alternatively, you may send us your corrections in list format. You may also upload revised graphics via the Author Gateway.

The moot on the continuous contribution of the model of the state **Carefully check the page proofs (and coordinate with all authors); additional changes or updates WILL NOT be accepted after the article is published online/print in its final form. Please check author names and affiliations, funding, as well as the overall article for any errors prior to sending in your author proof corrections.**

- AQ:1 = Please confirm or add details for any funding or financial support for the research of this article.
- AQ:2 = Please provide the department name for Ulyanovsk State University.
- AQ:3 = Please provide the publisher name and publisher location for Ref. [5].
- AQ:4 = Please provide the volume no. for Ref. [17].
- AQ:5 = Please provide the year of completion when the author Dmitry G. Sannikov received the Ph.D. degree.

Multiperiodic Photonic Crystals for Ultrasensitive Temperature Monitoring and Polarization Switching

Ivan S. Panyaevⁿ, Dmitry G. Sannikov, Yuliya S. Dadoenkova, and Nataliya N. Dadoenkova

From S. Panyaev⁹, Dmitry G. Samilicus Yulivist S. Dadoenkova, and Nataliya N. Dadoenkova

Van S. Panyaev⁹, Dmitry G. Samilicus; Yuliya S. Dadoenkova, and Nataliya N. Dadoenkova

Abstract-Wester Wester Western Engines 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 **Abstract—We study the influence of thermal expansion and thermo-optic effect on optical properties of finite 1-D threeperiodic photonic crystals (PCs) of structure [(ab) ^N(cd) M] K composed of four different nonmagnetic dielectric materials ^a, b, ^c, and d. We calculate temperature dependencies and incidence angle dependencies of the transmittivity of TE- and TM-polarized electromagnetic waves, as well as the distribution of energy within these structures. The optimal adjustment of PC bandgap centers for obtaining the desired transmission characteristics of the temperature-governed photonic bandgap structures is found, and the peculiarities of the energy distributions inside the photonic system are investigated. We propose a sensitive thermal polarization TE/TM switch as well as angular and temperature sensors working at the intraband-mode frequencies exploiting temperature effects.**

¹⁷ **Index Terms—Photonic bandgap, photonic crystal (PC), temperature sensing.**

18 **I.** INTRODUCTION

P¹⁹ HOTONIC crystals (PCs) are optical structures with peri-

²¹ odic modulation of the refractive index (or dielectric func-

²¹ tion). The optical transmittivity and reflectivity of PCs have odic modulation of the refractive index (or dielectric function). The optical transmittivity and reflectivity of PCs have ²² a photonic band structure consisting of alternating passbands ²³ and forbidden bands similar to the electronic band structure $_{24}$ of periodic potentials [1], [2], [3], [4]. Using various methods, ²⁵ it is possible to shape a given photonic band structure, thereby ²⁶ effectively controlling the fundamental optical properties, such ²⁷ as reflectivity, group velocity, the rate of spontaneous emission,

AQ:1 Manuscript received 21 September 2022; accepted 12 October 2022. This work was supported in part by the Russian Foundation for Basic Research under Grant 19-42-730008, in part by the Ministry of Science and Higher Education of the Russian Federation under Grant 075-15-2021-581, in part by the École Nationale d'Ingénieurs de Brest, France, and in part by the Collège de France under Programme PAUSE. The associate editor coordinating the review of this article and approving it for publication was Prof. Weileun Fang. (Corresponding author: Ivan S. Panyaev.)

Nataliya N. Dadoenkova is with Ulyanovsk State University, 432017 Ulyanovsk, Russia, and also with the Galkin Donetsk Institute for Physics and Engineering, 83114 Donetsk, Ukraine.

Digital Object Identifier 10.1109/JSEN.2022.3217117

and so on. Thus, many optic effects can be realized in PCs. ²⁸ For instance, by introducing irregularities or defect layers into 29 regular PCs, one can create defect modes (or inside-bandgap 30 modes). These modes are usually characterized by high and 31 narrow transmission peaks within the bandgaps, whereas the 32 electric field of the light wave is strongly localized inside 33 the defect layer, which in turn leads to many promising 34 applications [5], [6]. Indeed, the range of applications of $1-D_{35}$ PCs in photonics and optoelectronic devices today is extremely $\frac{36}{9}$ wide and includes filters, solar cells, fluorescent amplifying 37 devices, sensors, 3-D matrices, color displays, and so on [4], ³⁸ $[7], [8], [9].$

Recently, attention has been paid to the creation of active 40 photonic devices based on 1-D PCs with thermally tuned ⁴¹ spectra. For example, the thermal sensitivity of biosensors 42 implemented on amorphous $Si₃N₄/Si$ 1-D PC is investigated $_{43}$ in [10]. A ternary PC is proposed as a nanochemical sensor 44 to detect water concentration in ethanol [11]. Temperaturecontrolled 1-D PCs based on mesoporous $TiO₂$ and $SiO₂$ 46 layers can serve both as optical filters integrated with organic 47 and inorganic light-emitting diodes (OLED and LED) and as 48 low-cost infrared (IR) sensors with low power consumption 49 and manufacturing costs $[12]$. Multicomponent 1-D structures $\overline{}$ so [13] can be used in thermophotovoltaic applications. Temperature dependences of the transmission spectra of hybrid mul- ⁵² tifunctional superconducting $YBa₂Cu₃O₇ PCs$ were studied 53

1558-1748 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

AQ:2 Ivan S. Panyaev and Dmitry G. Sannikov are with Ulyanovsk State University, 432017 Ulyanovsk, Russia (e-mail: panyaev.ivan@rambler.ru).

Yuliya S. Dadoenkova is with Lab-STICC (UMR 6285), CNRS, École Nationale d'Ingénieurs de Brest (ENIB), 29238 Brest, France, and also with Ulyanovsk State University, 432017 Ulyanovsk, Russia (e-mail: dadoenkova@enib.fr).

 in [14]. Using the influence of the thermo-optical and thermal expansion effects in the polymer, a temperature sensor was designed on the base of a ternary PC [15], which operates by measuring the redshift of the transmission peak with an increase in the temperature. Analysis of temperature sensors based on ternary 1-D PCs with double defects has been carried out in [16]. Wide-range temperature sensors based on 1-D PCs with a single defect have been also proposed [17], [18].

62 Such PC structures with a large number of periods (several tens of bilayers) have been successfully fabricated using various methods (e.g., sol–gel, RF-sputtering, etc.) in recent decades [19], [20], [21], [22].

s increase in the temperature Analysis is demperature season in DR (Solution 1991). The same of the light speed of the proof of the same In this article, we provide a theoretical study of three- periodic 1-D PCs consisting of four dielectric oxides with different refractive indices. We continue the study begun in [19], [20], and [21], where 1-D three-period PCs with different layer orders are classified according to the magnitude and sign of the optical contrast in the pairs of layers forming the unit cells. The novelty of the type of structures studied here lies in the uniqueness of the layer combination (with a different optical contrast compared to the previously considered struc- tures) which results in a specific behavior of the spectra and flux distribution in the PC. Moreover, in this article, we take into account the influence of temperature effects on the optical and energy characteristics of such structures. We discuss the possibility of temperature control of the transmission spectra of this type of PC structure using the thermo-optical effect 81 and thermal linear expansion. We also propose a principle of precise polarization-sensitive filters and sensors used in nanophotonics and optoelectronics.

84 II. GEOMETRY OF 1-D THREE-PERIODIC 85 PHOTONIC CRYSTALS

86 Let us consider finite 1-D three-periodic PCs whose layers ⁸⁷ consist of four different dielectrics *a*, *b*, *c*, and *d* with 88 thicknesses l_a , l_b , l_c , and l_d , respectively. The unit cell of the 89 PC is a combination of two subcells formed by repeating parts ⁹⁰ of different materials, for example, (*ab*) and (*cd*), as shown in $Fig. 1$. Both the subcells are the finite PCs $(ab)^N$ and $(cd)^M$ 92 with corresponding period lengths $l_1 = l_a + l_b$ and $l_2 = l_c + l_d$. \mathbb{R}^3 Thus, the structural formula of the PC is $[(ab)^N(cd)^M]K$, ⁹⁴ where *N* and *M* are the subperiod numbers, and *K* is the 95 superperiod number. The total length of the PC is $L = K \cdot l_{\text{sup}}$, 96 where $l_{\text{sup}} = N \cdot l_1 + M \cdot l_2$ is the superperiod length. The ⁹⁷ structure is surrounded by air.

98 An electromagnetic wave of the wavelength λ in vacuum 99 (the angular frequency ω) is incident on the left-hand side 100 surface of the PC under the angle θ , so that *xz* is the incidence ¹⁰¹ plane (see Fig. 1).

¹⁰² We choose the layer thicknesses in both subcells to satisfy 103 the Bragg conditions for different Bragg wavelengths λ_{01} and 104 λ_{02} in vacuum

$$
l_{a,b} = \frac{\lambda_{01}}{4n_{a,b}(\lambda_{01})}, \quad l_{c,d} = \frac{\lambda_{02}}{4n_{c,d}(\lambda_{02})} \tag{1}
$$

106 where λ_{01} and λ_{02} correspond to the bandgap centers of the subcells $(ab)^N$ and $(cd)^M$, respectively, constituting the three-108 periodic PC. Thus, by choosing the values $l_{a,b}$ and $l_{c,d}$ in

Fig. 1. Schematic of 1-D three-periodic PCs belonging to the groups: (a) **hl** (structure $[(ab)^N(cd)^M]^K$), (b) **mm** (structure $[(ac)^N(bd)^M]^K$), and (c) **ll** (structure $[(ad)^N(bc)^M]^K$), for $N = M = 3$ and $K = 2$. Here, E^{TE} and E^{TM} denote electric fields of TE- and TM-polarized electromagnetic waves, and θ is the incidence angle.

correspondence with (1) , finely one can modify the position 109 and structure of the bandgap of the whole three-periodic 110 system. As an example, for the constituting materials of the 111 PC, we choose the well-known dielectric oxides $TiO₂$, $SiO₂$, 112 Al_2O_3 , and ZrO_2 (further for simplicity denoted as T, S, A, and 113 Z). All these materials are optically isotropic and the normal 114 modes of the considered PC are the electromagnetic waves 115 of TE- and TM-polarizations. The chosen oxides are trans- ¹¹⁶ parent in the wavelength range (1–5) μ m, and the frequency 117 dispersion of their dielectric permittivities are well described 118 by Sellmeier equations [22], [23], [24], [25].

The three-periodic four-component PCs can be classified 120 by the absolute values and signs of the dielectric contrasts ¹²¹ of materials in the subcells which are defined as dielectric ¹²² permittivity differences $\Delta \varepsilon_{ab} = \varepsilon_a - \varepsilon_b$ and $\Delta \varepsilon_{cd} = \varepsilon_c - \varepsilon_d$ 123 (see details in [23]). According to the values of dielectric ¹²⁴ contrasts, the subcells can be divided into three types: high- ¹²⁵ contrast subcells with $|\Delta \varepsilon| > 3.5$, medium-contrast subcells 126 with $2 < |\Delta \varepsilon| < 3.5$, and low-contrast subcells with $|\Delta \varepsilon| < 2$, 127 which are denoted as h^{\pm} , m^{\pm} , and l^{\pm} ("high," "medium," 128 and "low"), respectively. Here, the upper symbols " \pm " are 129 introduced to specify the sign of $\Delta \varepsilon_{ab}$. Thus, the three-periodic 130 PC structures formed by two pairs of different materials can 131 be divided into three groups $(hl, mm,$ and ll), where the first 132 and the second characters specify the corresponding pairs, 133 respectively. Each group contains four subgroups, for example, ¹³⁴ *h*⁺*l*⁺, *h*^{−*l*+}, *h*⁺*l*[−], and *h*^{−*l*−} for the group *hl*, and so on 135 [23]. The transmittivity spectra of the PCs of the same group 136 ¹³⁷ demonstrate similarities, and thus the order of the materials ¹³⁸ forming the subcells allows adjusting of the structure in order ¹³⁹ to have bandgaps with a predefined structure.

In addition to topological parameters (Bragg wavelengths defying the thicknesses of the layers) and optical parameters (optical contrast between the pairs of layers forming the PC periods), the spectra of PCs can also be affected by external factors—electric and/or magnetic fields, pressure, temperature, and so on. In particular, the temperature can have a noticeable effect on the bandgap configuration and the arrangement of defect modes. Moreover, in the applied aspect, considering the temperature response of the PCs is very important in photonics and quantum electronics, for instance, when creating mirrors for heterostructure laser cavities [20], [21], [26], [27].

 In this article, we assume that the local temperature in all the layers of the PC is the same and is equal to that of the air surrounding it. Temperature manifests itself through two phenomena: the thermo-optic effect, which affects their refractive index, and the thermal expansion of the layer thick- nesses, which modifies the geometry of the system. In what follows, both effects are considered for all the constituents of the system.

 Due to the thermo-optic effect, the refractive index of all the constituents of the system undergoes a noticeable variation upon temperature variation. For the considered oxides, this variation is linear with *T* and is characterized by a constant ¹⁶³ thermo-optic coefficient $γ_j$, with

$$
n_j (\Delta t) = n_{0j} + \gamma_j \Delta t, \quad (j = a, b, c, d) \tag{2}
$$

 $_{165}$ where n_{0j} is the refractive index of the medium *j* at a ¹⁶⁶ reference temperature *t*0, which in this study we take as a ¹⁶⁷ room temperature (around 293 K).

168 The values of the thermo-optical coefficients γ_i of the con-169 sidered oxides vary around $\pm 10^{-3}$ 1/K [28], [29], [30], [31] ¹⁷⁰ and generally depend on many factors, such as the composition ¹⁷¹ and purity of the material (or presence of impurities), film ¹⁷² thickness, temperature range, wavelength and polarization of ¹⁷³ light, and so on. Thus, without loss of generality, we take all the coefficients equal to an average value $\gamma = 10^{-4}$ 1/K.

The variation of the thickness l_i ($j = a, b, c, d$) of the film ¹⁷⁶ of material *j* upon temperature *t* change is determined by the 177 linear thermal expansion coefficient η_i of that material

$$
l_j = l_{0j} \left(1 + \eta_j \Delta t \right) \tag{3}
$$

where l_{0j} is a nominal thickness at temperature t_0 for each 180 layer of the system, and $\Delta t = t - t_0$.

 Strictly speaking, the linear expansion of films in the transverse direction can lead to deformation or destruction of the structure; therefore, in our calculations, we limited ¹⁸⁴ ourselves to an increase in temperature by $\Delta t = 100$ K. Since the lateral dimensions of the layers are much larger than their thickness, we neglect the effect of thermal expansion in the *x-* and *y*-directions. The values of the coefficients of linear thermal expansion are given in Table I. One can estimate that 189 the maximum expansion for the $ZrO₂$ film, which has the highest coefficient of linear expansion among the materials under study, with a thickness of 100 nm, does not exceed ¹⁹² 0.1 nm.

TABLE I LINEAR EXPANSION COEFFICIENTS OF THE PC CONSTITUENTS

Material	Linear thermal expansion coefficient, in 1/K [37]	Maximum expansion of a 100 nm thick film with a temperature change of 100 K, in nm
SiO ₂	2.10^{-6}	0.02
Al_2O_3	$8.8 \cdot 10^{-6}$	0.09
TiO ₂	$7.4 \cdot 10^{-6}$	0.07
ZrO ₂	10^{-5}	0.1

We calculate the transmittivity spectra of the electromag- 193 netic waves of near IR range propagating through the 1-D ¹⁹⁴ three-periodic PCs using the standard transfer matrix method ¹⁹⁵ (for details, see [36]). The material parameters (refractive ¹⁹⁶ indices, thermo-optic coefficients, and thermal expansion coef-
197 ficients) for all the PC constituents were taken in [28], [29], ¹⁹⁸ $[30], [31], \text{ and } [33].$

III. NUMERICAL ANALYSIS AND DISCUSSION 200 A. Transmittivity Spectra at Room Temperature 201

First, we analyze the optical characteristics of tree-periodic 202 PCs at room temperature t_0 and at normal incidence of 203 light ($\theta = 0$, so that the TE- and TM-polarized modes are 204 degenerate). 205

so (depleal includes to the hyses) and optical purentest

so (depend contrast between the parts of line of the contrast of the control of the control of the specific of the specific of the specific of the specific of th Fig. $2(a)-2(1)$ shows the transmittivity of the PCs from 12 206 above-mentioned subgroups of the three-component structures 207 $[(ab)^N(cd)^M]^K$ as functions of the normalized vacuum Bragg 208 wavelengths $\lambda_{01,02}/\lambda$, with the wavelength of the incident 209 electromagnetic wave $\lambda = 1.55$ μ m. We consider the case 210 of $M = N = K = 5$, since these numbers of the cells 211
are sufficient to ensure abrupt boundaries of the bandgaps are sufficient to ensure abrupt boundaries of the bandgaps and pronounced and well-distinguishable transmission bands 213 (see our papers $[19]$, $[20]$). The dielectric permittivities of 214 the materials are chosen to be corresponding to the room ²¹⁵ temperature t_0 [23], [24], [31], [34]. The light and dark areas in $_{216}$ Fig. 2 correspond to the transmission bands and the photonic 217 bandgaps, respectively. 218

From Fig. 2, it follows that the bandgap width is mainly 219 defined by the value of the optical contrast of the sub- ²²⁰ cells forming the three-periodic PC. For instance, for the 22 structures of the group (hl) containing the high-contrast $_{222}$ and low-contrast subcells, one can see that the bandgaps 223 are broader along the λ_{01}/λ axis, corresponding to the 224 center of the bandgap of the high-contrast subcell (*h*) ²²⁵ [see Fig. 2(a), (d), (g), and (j)]. The bandgap along the λ_{02}/λ 226 axis, ensured by low-contrast subcell (*l*) is less pronounced. 227 In comparison to these spectra, for the structures consist- ²²⁸ ing of two low-contrast subcells $(*ll*)$, the bandgaps are narrower and not well pronounced along both λ_{01}/λ and λ_{02}/λ 230 axes [see Fig. 2(b), (e), (h), and (k)]. Finally, the struc- 231 tures consisting of medium optical contrast subcells (*mm*) 232 [Fig. 2(c), (f), (i), and (l)] possess quite broad bandgaps $_{233}$ which are essentially broader than those in the case of 234 (*ll*) groups, but still slightly narrower than those of (*hl*) ²³⁵ groups. 236

However, one can notice some similarities in the spectra of 237 all these structures. In particular, let us consider the central ²³⁸ point of each spectrum, where the bandgap centers of both ²³⁹

Fig. 2. Transmittivity spectra $T^{TE} = T^{TM}$ (in logarithmic color scale) of three-periodic PCs $[(ab)^5(cd)^5]^5$ for all 12 subgroups (a)–(i) as functions of the reduced vacuum Bragg wavelengths λ_{01}/λ and λ_{02}/λ of the subcells (ab)⁵ and (cd)⁵, respectively. Calculations are carried out for the working wavelength $\lambda = 1.55 \ \mu \text{m}$, for normal incidence ($\theta = 0$), and at room temperature $t_0 = 293 \text{ K}$.

subcells $(ab)^N$ and $(cd)^M$ coincide, being equal to the working 241 wavelength (i.e., $\lambda_{01} = \lambda_{02} = \lambda 1.55 \mu \text{m}$, or $\lambda_{01,02}/\lambda = 1$). ²⁴² This point corresponds to the bandgap centers for all the ²⁴³ considered three-periodic structures from the subgroups with ²⁴⁴ pairs of layers having identical signs of the optical contrast $\mu = (h^{\pm}l^{\pm}, l^{\pm}l^{\pm}, \text{ and } m^{\pm}m^{\pm}).$ On the contrary, for the PCs ²⁴⁶ from the subgroups with different signs of optical contrast ²⁴⁷ in the pairs of layers (h [±]*l*^{\pm}, l [±]*l*^{\mp}, and m [±] m ^{\mp}), the bandgaps ²⁴⁸ are either significantly shrank [as for the structures from the subgroups h^-l^+ and h^+l^- in Fig. 2(d) and (g)], or they ²⁵⁰ disappear completely giving the space to the transmission

bands of the defect modes [structures of the subgroups *l* −*l* + ²⁵¹ and l^+l^- and m^-m^+ and m^+m^- in Fig. 2(e) and (h) and 252 Fig. $2(f)$ and (i), respectively].

For further analysis, we choose a three-periodic 254 PC of the subgroup $m+m$ [−], which demonstrates 255 a relatively broad bandgap with the intraband ²⁵⁶ transmission modes, such as the structure $[(TA)^5(SZ)^5]^5$ 257 $[see Fig. 2(i)].$

According to (1), in the considered range of λ_{01} and λ_{02} , 259 the thicknesses of the layers vary between several tens and ²⁶⁰ several hundred nanometers. 261

Fig. 3. Transmittivity spectra of the structure [(TA)⁵(SZ)⁵]⁵ as functions of the reduced vacuum Bragg wavelengths λ_{01}/λ and λ_{02}/λ of the subcells (TA)⁵ and (SZ)⁵, respectively, for different incidence angles $\theta = 15^{\circ}$, 30°, and 45°. Calculations are carried out for $\lambda = 1.55 \ \mu m$ and $t_0 = 293$ K. (a) – (c) Top panels and (d) – (f) the bottom panels correspond to TE- and TM-modes, respectively.

 One of the parameters for controlling the spectra of photonic structures is the incidence angle. At oblique incidence, the degeneracy of TE- and TM-modes is canceled, and the spectra of these modes behave differently [23]. In Fig. 3, we show the dependencies of the transmittivity on the reduced vacuum 267 Bragg wavelengths λ_{01}/λ and λ_{02}/λ of the first and second 268 subcells of the structure $[(TA)^5(SZ)^5]^5$ for different incidence angles. From Fig. 3, one can see that with an increase in the incidence angle, the bandgaps shift diagonally relatively to the 271 central point $\lambda_{01}/\lambda = \lambda_{02}/\lambda = 1$ toward larger values of λ_{01}/λ and λ₀₂/λ both for TE- and TM-polarized modes. However, the bandgaps of the TE-polarized mode become broader and their edges become sharper with an increase of θ, whereas those of the TM-polarized mode demonstrate narrowing and blurring of the edges.

 The key point in the change in the transmission spectra of this structure with an increase in the angle of incidence of light is the alternation of the passbands and the bandgaps 280 for both polarizations (TE and TM) at the point λ_{01}/λ = $\lambda_{02}/\lambda = 1$. Under normal incidence, this point is located within 282 the transmission band [see Fig. 2(i)]. Then, as θ increases, passbands and bandgaps begin to alternate through it. Indeed, 284 at $\theta = 15^{\circ}$, this point is still in the passband, whereas at $\theta = 30^{\circ}$, it already corresponds to the bandgap edge [see $Fig. 3(b)$ and (e)], and at $\theta = 45^{\circ}$, it is inside the bandgap [see Fig. 3(c) and (f)]. The practical value of the resulting pattern lies in the possibility of flexible control of the transmission in the bandgap region by varying the angle of incidence (i.e., photonic bandgap switching).

Furthermore, we investigate the influence of temperature 291 variations on the transmittivity spectra in the vicinity of the 292 inside-bandgap modes. ²⁹³

B. Temperature Tuning of the Transmittivity Spectra 294

Let us consider in detail the transmittivity of the structure 295 $[(TA)^5(SZ)^5]^5$ at the wavelength interval around the central 296 passband inside the bandgap. Fig. 4 shows how the transmit-

₂₉₇ tivity spectra at normal incidence $T^{TE}(\omega, \Delta t) = T^{TM}(\omega, \Delta t)$ 298 and for the fixed Bragg wavelengths $\lambda_{01} = \lambda_{02} = 1.55 \mu m$ 299 change with temperature variation $\Delta t = t - t_0 > 0$. It can so be interpreted as a temperature-dependent drift of the cross 301 section of Fig. 2(i) along the line $\lambda_{01}/\lambda = \lambda_{02}/\lambda$. As can some be seen from Fig. 4(a), the central transmission peak ($\lambda \approx$ 303 1.55 μ m) does not reach unity, but takes a value of about 304 0.45. The full-width at half-maximum (FWHM) of that peak 305 is 3.6 nm (or 2.8 THz·rad). Four high-transmittivity peaks are 306 present on either side of that central one, and they narrow with 307 distance from the central peak. Thus, the number of peaks on 308 either side of the central one is $(K - 1)$. It should be noted 309 that in bi- and three-periodic PCs, the number of the subpeaks 310 of the inside-bandgap modes is also equal to $(K - 1)$ [32], 311 [35], which is related to the overlapping of the electromagnetic $\frac{312}{2}$ waves localized in the "defect" layers of the structure. In the 313 PC considered here, two inside-bandgap modes merge, and the 314 total number of the peaks in the considered central passband 315 is $(2K - 1)$. The FWHM of the peaks adjacent to the central $\frac{316}{256}$ one is about 2.4 nm (1.8 THz·rad), whereas the FWHM of the $_{317}$ outermost peaks is less than 0.34 nm (250 GHz-rad) . 318

Fig. 4. Transmittivity spectra $T(\omega, \Delta t)$ at normal incidence for the structure: (a) $[(TA)^5(SZ)^5]^5$ with $\lambda_{01} = \lambda_{02} = 1.55 \ \mu m$; (b) $[(TA)^5(SZ)^5]^{10}$ with $\lambda_{01} = \lambda_{02} = 1.55 \ \mu \text{m}$; and (c) $[(TA)^5(SZ)^5]^{10}$ with $\lambda_{01} = \lambda_{02} = 1.485 \ \mu \text{m}$.

 If the layer thicknesses of the structure are initially adjusted 320 to the Bragg wavelengths $\lambda_{01} = \lambda_{02} = 1.55 \mu \text{m}$, the central transmission peak is observed at this wavelength. As the temperature rises, a red shift of the transmission spectrum takes place. Indeed, with an increase of temperature by 100 K, the central peak shifts to a wavelength of 1.56 μ m, and its value slightly increases (by approximately 0.02). Thus, the thermal sensitivity of the spectrum of such a three-periodic PC is about 0.1 nm/K, which is 1.6 times more than the sensitivity of the defect mode position to the temperature change reported for 1-D Si-based PC with a single defect layer [17].

³³⁰ With an increase in the number of supercells, the trans-³³¹ mission peaks narrow significantly, as shown in Fig. 4(b) for $x = 10$ without a change in the sensitivity to the temperature. 333 Moreover, by choosing the values of λ_{01} and λ_{02} , one can ³³⁴ shift the entire spectrum along the wavelength [see Fig. 4(c) 335 for $\lambda_{01} = \lambda_{02} = 1.485 \mu \text{m}$).

 Thus, by adjusting the geometrical parameters of the three-337 periodic PC, one can optimize it for monitoring the temper- ature variations by measuring the shift of a narrow subpeak of the passband. Temperature sensitivity can be defined as the rate at which a system undergoes a transition from a state of transmission to a state of nontransmission. The latter is a matter of convention: for instance, one can associate a temperature change [1/K] with the transmittivity decay from $T = 90\%$ to $T = 10\%$ (such transition is widely used, e.g., in nonlinear fiber optics to estimate the pulse rise time [40]). 346 For instance, for the structure shown in Fig. 4(c), at $\lambda =$ 1.55 μ m, the transmittivity changes from 0.9 to 0.1 with a temperature drop of 0.45 K (from 25.26 to 24.81 K). Thus,

the temperature sensitivity of a potential sensor, based on the ³⁴⁹ considered structure, can be as high as $2.22 \frac{1}{K}$. 350

As was discussed above, with an increase in the angle of 351 incidence, the degeneracy of the TE and TM polarizations is 352 removed, and the spectra of these modes should be studied 353 separately. Fig. 5 shows the dependences of the transmittivity 354 of the structure $[(TA)^5(SZ)^5]^5$ on the angle of incidence θ and 355 temperature variation Δt . At $\Delta t = 0$ and $\theta = 0$, this figure 356 corresponds to the transmittivity at the point $(\lambda_{01}/\lambda, \lambda_{02}/\lambda) =$ 357 $(1,1)$ on the inset in Fig. 2(i). As can be seen from Fig. 5, $\frac{1}{358}$ at small incidence angles and relatively small deviations from ³⁵⁹ room temperature t_0 ($\theta < 7^\circ$, $\Delta t < 15$ K), the transmittivity 360 is relatively high for both TE- and TM-modes. At larger 361 θ , however, the difference in the spectra of the TE- and 362 TM-polarized light becomes significant. For instance, at room 363 temperature, the structure does not transmit the TE-polarized 364 light at $\theta > 31^\circ$, which corresponds to the main bandgap. 365 For TM-polarization state, a similar picture is observed at the 366 incidence angles interval 34[°] < θ < 68[°], and at θ > 68[°], one 367 can see the next group of the high-transmittivity passbands. 368

As the temperature increases, both the passbands and the 369 bandgaps shift toward larger angles of incidence. At a fixed θ , 370 as the deviation from room temperature increases, a transition 371 from one mini-bandgap region to another can occur. For 372 pronounced bands, this transition requires less temperature 373 deviation, as seen in the inset in Fig. $5(a)$. For example, for 374 a TE-polarized wave in the vicinity of $\theta \approx 29.4^\circ$, initially, 375 for $\Delta t \approx 0$, the transmittivity is maximal, $T^{TE} \sim 1$, then, 376 as the temperature increases, a mini-bandgap is observed with 377 the transmission coefficient of about 10^{-3} – 10^{-1} , and at 378

Fig. 5. Evolution of the transmittivity (in logarithmic color scale) of the (a) TE- and (b) TM-modes for the structure $[(TA)^5(SZ)^5]^5$ with the incidence angle θ and temperature variation Δt . Here, $\lambda = \lambda_{01} = \lambda_{02}$ = $1.55 \mu m$.

 $\Delta t > 80$ K, the passband is again observed. The sensitivity of this transmission bandwidth shift is about $\Delta\theta/\Delta t \approx 0.03^{\circ}/K$. ³⁸¹ The revealed features of the transmittivity spectra make it ³⁸² possible to achieve a double adjustment of the transmission ³⁸³ level of the three-periodic structure: 1) roughly—by changing ³⁸⁴ the incidence angle and 2) smoothly—by varying the temperature. This makes it possible to use these results in sensors with several logical levels of transmission and nontransmission.

³⁸⁷ C. Temperature Tuning of the Energy Characteristics

 Peculiarities of the spectra of three-periodic PCs lead to specific behavior of energy characteristics of these structures, and consideration of the sensitivity of these parameters to temperature changes deserves a separate study.

 Fig. 6 shows the distributions of the longitudinal compo- nent (i.e., along the *x*-axis) of the Umov–Poynting vector $S_x(\theta, z)$ inside the structure $[(TA)^5(SZ)^5]^5$ for (a) TE- and (b) TM-polarization states of light at room temperature. One 396 can see that $S_r(\theta, z)$ presents beating-like series of maxima at the intervals of the incidence angles corresponding to the high-398 transmittivity narrow passbands. The intervals of θ where no peaks are observed, correspond to the bandgap of the structure 400 [compare, for instance, Figs. 5(a) and 6(a) at $\Delta t = 0$). This distribution can be interpreted as a transverse intensity, that is, the intensity of light at the cross section of the PC parallel to

the *z*-axis. When considering a PC as a resonator in which 403 standing light waves are observed [with field components ⁴⁰⁴ $E_y(z)$ for TE- or $H_y(z)$ for TM-polarized waves], one can 405 consider the intensity minima and maxima $(S_x \sim |E_y|^2)$ and 406 thus $S_x \sim T^{TE}$, see [25] for details) as nodes and antinodes, ₄₀₇ respectively. 408

Inside the PC, the antinodes are grouped into "clusters" 409 (in Fig. 6, these clusters are indicated by gray dotted rec- ⁴¹⁰ tangles). The blurring of the antinodes generally decreases 411 when the angle of incidence approaches the bandgap edges for 412 TE- and TM-modes. For TM modes, the antinodes also exist 413 for large angles of incidence, with the maxima merging at 414 grazing incidence. It is interesting to note that the further θ is 415 from the bandgap edge, the less is the number of peaks inside 416 the "cluster," whereas the number of the clusters increases. 417

Fig. 7 shows the evolution of the dependences $S_x(\theta, z)$ 418 for two narrow passbands (near $\theta = 28^\circ$ and $\theta = 30^\circ$ for 419 TE-polarization and $\theta = 30^\circ$ and $\theta = 33^\circ$ for TM-polarization $_{420}$ states of light) with an increase of temperature. Blue peaks 421 correspond to room temperature t_0 ($\Delta t = 0$), green peaks 422 correspond to $\Delta t = 25$ K, and the red ones to $\Delta t = 50$ K. 423 As can be seen, with increasing temperature by 25 K, the 424 distribution $S_x(\theta, z)$ corresponding to individual transmission 425 bands shifts on average by $0.7°$ toward larger values of the 426 incidence angle for both TE- and TM-polarizations. The shape 427 of S_x (namely, the number of the peaks and their position along 428 the *z*-coordinate) is preserved. The angular distance (difference 429 in the angles of incidence) between the transmission peaks ⁴³⁰ for the TE- and TM-modes is more than 1.5° , which is five 43° times greater than that in a ternary (three-component single-
432 periodic) PC [36]. These peculiarities allow us to propose a ⁴³³ sensitive thermal polarization TE/TM switch that monitors the 434 temperature variation by measuring the change of the angular 435 distance at which a certain distribution of the transverse ⁴³⁶ component of the Umov–Poynting vector of the corresponding 437 bandwidth is observed. 438

On the other hand, by fixing the incidence angle, for ⁴³⁹ example, at $\theta = 29.4^\circ$, it is possible to observe the TE-mode $_{440}$ at $\Delta t = 0$ K, whereas at $\Delta t = 25$ K, there is no $\frac{441}{2}$ TE-polarized light, but the TM-mode appears, which makes it 442 possible to implement a polarizing TE–TM switch controlled ⁴⁴³ by temperature. Furthermore, for one polarization state, for ⁴⁴⁴ example, TE, fixing the incidence angle $\theta = 29.4^\circ$ and slightly 445 varying the temperature, one can observe a sharp drop in the 446 intensity $S_x(z)$, which gives a principle of an ultrasensitive 447 thermal sensor. Indeed, an increase in temperature by 1 K 448 leads to a decrease in the peaks of the energy flux by about 449 two times (see Fig. 8), whereas the spatial position of the ⁴⁵⁰ peaks does not change. Thus, the relative sensitivity of the ⁴⁵¹ longitudinal energy flux to the temperature variations can be 452 estimated as $(S_x |_{\Delta_t=0} - S_x |_{\Delta_t=1} K) / (\Delta t S_x |_{\Delta_t=0}) = 50\% / K.$ 453 Note that the sensitivity of the temperature sensor can be 454 further increased by increasing the number of subcells (*M* ⁴⁵⁵ and N) and superperiods (K) , which will lead to narrowing 456 of the resonance lines and thus faster decay of the energy 457 flux distribution with small changes of the temperature. The 458 alternation of the transverse intensity bands can also be used 459 in modeling the logic elements of integrated optics, and the 460

Fig. 6. Longitudinal component of the Umov–Poynting vector $S_x(\theta, z)$ of (a) TE- and (b) TM-polarized light as a function of the incidence angle θ and the z-coordinate inside the structure $[(TA)^5(SZ)^5]^5$ at room temperature t_0 .

Fig. 7. Longitudinal component of the Umov–Poynting vector $S_x(\theta, z)$ of (a) TE- and (b) TM-polarized light as a function of the incidence angle θ and the z-coordinate inside the structure [(TA)⁵(SZ)⁵]⁵ for different values of the temperature deviation $\Delta t = 0$, 25, 50 K (blue, green, and red peaks).

Fig. 8. Longitudinal component of the Umov–Poynting vector $S_X(z)$ of the TE-polarized light as a function of the ^z-coordinate inside the structure [(TA)⁵(SZ)⁵]⁵ for different values of the temperature deviation $\Delta t = 0$, 1, 2 K (blue, green, and red curves, respectively) at the incidence angle $\theta = 29.4^\circ$.

⁴⁶¹ ability to work simultaneously in two orthogonal polarizations ⁴⁶² makes it possible to double the number of potential logic ⁴⁶³ levels/number of states.

⁴⁶⁴ IV. CONCLUSION

⁴⁶⁵ In this work, we have developed a theoretical analysis of the ⁴⁶⁶ optical properties of 1-D four-component three-periodic PCs $[((ab)^N(cd)^M]^K$ based on TiO₂, SiO₂, Al₂O₃, and ZrO₂ oxides,

accounting for the temperature effects on the transmittivity 468 spectra. The considered structures have an advantage over 469 ternary PCs $[(ab)^{N}c]^{M}$, where layers *c* play a role of regularly 470 repeating defect layers. Four-component three-periodic PCs ⁴⁷¹ can be considered as a composite structure in which one of 472 the cells plays the role of a "defect" and the other plays the 473 role of the "regular" PC. 474

We focused on the structures with a medium optical contrast 475 in the pairs of layers *a*, *b*, and *c*, *d* of the subcells $(ab)^N$ 476 and $(cd)^M$, in contrast to the high and low optical contrast 477 studied previously. Considering the thermo-optic effect and 478 the effect of temperature expansion, we analyzed the influence of temperature on the transmittivity spectra of TE- and 480 TM-modes and on the intensity distribution inside the PC. ⁴⁸¹ We demonstrate how the choice of the Bragg wavelengths of 482 the subcells can adjust the transmittivity spectra of such a 483 multiperiodic PC. In addition, the difference in the "resonance" 484 angles of incidence θ corresponding to the transmission peaks 485 of any neighboring modes of TE and TM polarizations can be ⁴⁸⁶ about 1.5° , which is at least five times as large as in a ternary $\frac{487}{2}$ PC. This gives a competitive advantage in the development of 488 polarization-sensitive splitters (switcher) or detectors based on 489 multiperiodic PCs.

As the temperature increases, the transmission band shifts 491 at a rate of $\Delta\theta/\Delta t \approx 0.03^{\circ}/K$, which provides a double 492 adjustment of the transmission capacity of the structure: by ⁴⁹³ changing the angle of incidence (rough adjustment) and by ⁴⁹⁴ changing the temperature (smooth adjustment). The sensitivity of the spectrum of a three-periodic PC to the variation of temperature is about 0.1 nm/K, which is larger than that of a single-periodic PC with a defect layer. Additionally, such multiperiodic PC can be used for monitoring of tiny deviations of temperature by measuring the intensity distribution along the axis of the structure.

as [o](http://dx.doi.org/10.1007/s40094-018-0308-x)[f](http://dx.doi.org/10.1016/j.ceramint.2019.08.270) deriversion between the interest of the deriversion of the continue of the interest of the interest of the continue of the interest of All these peculiarities thus can be useful in the fabrica- tion of sensors that assume the presence of several logical levels of transmission and nontransmission. In addition, the presence of several levels of transmission and nontransmission with different values of transmittivity makes it possible to use such a structure as an artificial optical synapse for neuromor- phic processors, taking into account temperature fluctuations [41]. Adjustable wavelength tuning accuracy can also be useful when working with medical laser sources in the near- and mid-IR ranges.

 In view of the foregoing, the type of structures considered in this article can be used, in particular, as a basis for creating a thermal sensor integrated into other photonic and/or integrated optics devices, or used as a separate multifunctional photonic device that combines the functions of a thermal sensor (0.1 nm/K or as high as 2.22 1/K for $T = 90\%$ to $T = 10\%$ transition), an angle sensor (no worse than $0.03\degree$ /K), a polarization switch, and a logic element of an integrated photonics circuit.

521 REFERENCES

- ⁵²² [1] J. D. Joannopoulos, S. G. Johnson, J. N. J. Winn, and R. D. Meade, ⁵²³ "Photonic crystals," in *Molding the Flow of Light*, 2nd ed. Princeton, ⁵²⁴ NJ, USA: Princeton Univ. Press, 2008.
- ⁵²⁵ [2] R. B. Wehrspohn, H.-S. Kitzerow, and K. Busch, Eds., *Nanophotonic* ⁵²⁶ *Materials*. Berlin, Germany: Wiley, 2008, doi: 10.1002/9783527621880.
- ⁵²⁷ [3] K. Sakoda, *Optical Properties of Photonic Crystals*, 2nd ed. Berlin, ⁵²⁸ Germany: Springer, 2005, doi: 10.1017/CBO9781107415324.004.
- ⁵²⁹ [4] Q. Gong and X. Hu, *Photonic Crystals: Principles and Applications*. ⁵³⁰ Stanford, CA, USA: Pan Stanford, 2014.
- ⁵³¹ [5] M. L. T. Cossio, *Photonic Crystals: Molding the Flow of Light*, 2nd ed., AQ:3 532 vol. 33, no. 2. 2012, doi: 10.1007/s13398-014-0173-7.2.
	- ⁵³³ [6] D. W. Prather, A. Sharkawy, S. Shi, J. Murakowski, and G. Schneider, ⁵³⁴ *Photonic Crystals?: Theory, Applications, and Fabrication*. Hoboken, ⁵³⁵ NJ, USA: Wiley, 2009.
	- ⁵³⁶ [7] H. Shen, Z. Wang, Y. Wu, and B. Yang, "One-dimensional photonic ⁵³⁷ crystals: Fabrication, responsiveness and emerging applications in 3D ⁵³⁸ construction," *RSC Adv.*, vol. 6, no. 6, pp. 4505–4520, 2016, doi: ⁵³⁹ 10.1039/c5ra21373h.
	- ⁵⁴⁰ [8] N. Dadoenkova, Y. Dadoenkova, I. Panyaev, D. Sannikov, and ⁵⁴¹ I. Lyubchanskii, "Multiperiodic one-dimensional photonic crystals," ⁵⁴² in *2D and Quasi-2D Composite and Nanocomposite Materials*. ⁵⁴³ Amsterdam, The Netherlands: Elsevier, 2020, pp. 103–124, doi: ⁵⁴⁴ 10.1016/b978-0-12-818819-4.00011-8.
	- ⁵⁴⁵ [9] A. Biswal, R. Kumar, C. Nayak, S. Dhanalakshmi, H. Behera, ⁵⁴⁶ and I. L. Lyubchanskii, "Analysis of transmission spectra in one-⁵⁴⁷ dimensional ternary photonic crystals with complex unit cell," *Optik*, ⁵⁴⁸ vol. 261, Jul. 2022, Art. no. 169169, doi: [10.1016/J.IJLEO.2022.](http://dx.doi.org/10.1016/J.IJLEO.2022.169169)
	- 549 [169169.](http://dx.doi.org/10.1016/J.IJLEO.2022.169169)
550 [10] F. Mich ⁵⁵⁰ [10] F. Michelotti and E. Descrovi, "Temperature stability of Bloch surface ⁵⁵¹ wave biosensors," *Appl. Phys. Lett.*, vol. 99, no. 23, pp. 2009–2012, ⁵⁵² 2011, doi: [10.1063/1.3666031.](http://dx.doi.org/10.1063/1.3666031)
	- ⁵⁵³ [11] S. A. Taya, A. Sharma, N. Doghmosh, and I. Colak, "Detection of water ⁵⁵⁴ concentration in ethanol solution using a ternary photonic crystal-based ⁵⁵⁵ sensor," *Mater. Chem. Phys.*, vol. 279, Mar. 2022, Art. no. 125772, doi: ⁵⁵⁶ [10.1016/j.matchemphys.2022.125772](http://dx.doi.org/10.1016/j.matchemphys.2022.125772).
	- ⁵⁵⁷ [12] A. T. Exner, I. Pavlichenko, B. V. Lotsch, G. Scarpa, and P. Lugli, ⁵⁵⁸ "Low-cost thermo-optic imaging sensors: A detection principle based on ⁵⁵⁹ tunable one-dimensional photonic crystals," *ACS Appl. Mater. Interfaces*, ⁵⁶⁰ vol. 5, no. 5, pp. 1575–1582, Mar. 2013, doi: [10.1021/am301964y.](http://dx.doi.org/10.1021/am301964y)
- [13] I. Celanovic, F. O'Sullivan, M. Ilak, J. Kassakian, and D. Perreault, ⁵⁶¹ "Design and optimization of one-dimensional photonic crystals for ⁵⁶² thermophotovoltaic applications," *Opt. Lett.*, vol. 29, no. 8, p. 863, ⁵⁶³ Apr. 2004, doi: [10.1364/OL.29.000863](http://dx.doi.org/10.1364/OL.29.000863). 564
- [14] A. H. Aly, S. E.-S.-A. Ghany, B. M. Kamal, and D. Vigneswaran, 565 "Theoretical studies of hybrid multifunctional $YaBa_2Cu_3O_7$ photonic see
crystals within visible and infra-red regions," Ceram. Int., vol. 46, no. 1. ss7 crystals within visible and infra-red regions," *Ceram. Int.*, vol. 46, no. 1, pp. 365–369, Jan. 2020, doi: 10.1016/j.ceramint.2019.08.270. ⁵⁶⁸
- [15] D. M. El-Amassi, S. A. Taya, and D. Vigneswaran, "Temperature sensor 569 utilizing a ternary photonic crystal with a polymer layer sandwiched 570 between Si and SiO₂ layers," *J. Theor. Appl. Phys.*, vol. 12, no. 4, 571 pp. 293–298, Dec. 2018, doi: 10.1007/s40094-018-0308-x. ⁵⁷²
- [16] S. E.-S.-A. El-Ghany, "Analysis of temperature sensors based on ternary 573 one dimensional photonic crystals with double defects," *J. Nanoelectron-* ⁵⁷⁴ *ics Optoelectronics*, vol. 14, no. 11, pp. 1532-1538, Nov. 2019, doi: 575 10.1166/JNO.2019.2653. 576
- [17] A. Kumar, V. Kumar, B. Suthar, A. Bhargava, K. S. Singh, and 577 S. P. Ojha, "Wide range temperature sensors based on one-dimensional 578 photonic crystal with a single defect," *Int. J. Microw. Sci. Technol.*, ⁵⁷⁹ pp. 182793–182795, Apr. 2012, doi: 10.1155/2012/182793. ⁵⁸⁰ AQ:4
- [18] O. Soltani, S. Francoeur, and M. Kanzari, "Superconductor-based 581 quaternary photonic crystals for high sensitivity temperature sens- ⁵⁸² ing," *Chin. J. Phys.*, vol. 77, pp. 176–188, Jun. 2022, doi: ⁵⁸³ 10.1016/J.CJPH.2022.02.007. ⁵⁸⁴
- [19] V. A. Romanova, L. B. Matyushkin, and V. A. Moshnikov, "One- ⁵⁸⁵ dimensional photonic SiO_2-TiO_2 crystals: Simulation and synthesis 586
by sol-gel technology methods" Glass Phys. Chem. yol. 44, no. 1 by sol-gel technology methods," *Glass Phys. Chem.*, vol. 44, no. 1, pp. 7–14, Jan. 2018, doi: 10.1134/S1087659618010108. 588
- [20] S. Valligatla et al., "High quality factor 1-D Er^{3+} -activated dielectric 589 microcavity fabricated by RF-sputtering," *Opt. Exp.*, vol. 20, no. 19, ⁵⁹⁰ pp. 21214–21222, 2012, doi: 10.1364/OE.20.021214. 591
[21] L. González-García, S. Colodrero, H. Míguez, and 592
- [21] L. González-García, S. Colodrero, H. Míguez, and ⁵⁹² A. R. González-Elipe, "Single-step fabrication process of 1-D photonic 593 crystals coupled to nanocolumnar $TiO₂$ layers to improve DSC $=$ 594 efficiency," *Opt. Exp.*, vol. 23, no. 24, p. A1642, Nov. 2015, doi: $=$ 595 efficiency," *Opt. Exp.*, vol. 23, no. 24, p. A1642, Nov. 2015, doi: 10.1364/oe.23.0a1642. 596
- [22] M. Bellingeri, A. Chiasera, I. Kriegel, and F. Scotognella, "Optical 597 properties of periodic, quasi-periodic, and disordered one-dimensional ⁵⁹⁸ photonic structures," *Opt. Mater.*, vol. 72, pp. 403–421, Oct. 2017, doi: ⁵⁹⁹ 10.1016/j.optmat.2017.06.033. ⁶⁰⁰
- [23] I. S. Panyaev, L. R. Yafarova, D. G. Sannikov, N. N. Dadoenkova, 601 Y. S. Dadoenkova, and I. L. Lyubchanskii, "One-dimensional multiperi- 602 odic photonic structures: A new route in photonics (four-component ⁶⁰³ media)," *J. Appl. Phys.*, vol. 126, no. 10, Sep. 2019, Art. no. 103102, ⁶⁰⁴ doi: 10.1063/1.5115829. 605
- [24] I. S. Panyaev, D. G. Sannikov, N. N. Dadoenkova, and Y. S. Dadoenkova, 606 "Energy flux optimization in 1D multiperiodic four-component photonic ϵ_{00} crystals," *Opt. Commun.*, vol. 489, Jun. 2021, Art. no. 126875, doi: ⁶⁰⁸ 10.1016/j.optcom.2021.126875. ⁶⁰⁹
- [25] I. S. Panyaev, D. G. Sannikov, N. N. Dadoenkova, and Y. S. Dadoenkova, 610 "Three-periodic 1D photonic crystals for designing the photonic optical 611 devices operating in the infrared regime," *Appl. Opt.*, vol. 60, no. 7, 612 p. 1943, Mar. 2021, doi: 10.1364/ao.415966. ⁶¹³
- [26] I. H. Malitson and M. J. Dodge, "Refractive index and birefringence of 614 synthetic sapphire," *J. Opt. Soc. Amer.*, vol. 62, p. 1405, Jan. 1972, doi: 615 10.1364/JOSA.62.001336. 616
- [27] J. R. DeVore, "Refractive indices of rutile and sphalerite," *J. Opt.* ⁶¹⁷ *Soc. Amer. B, Opt. Phys.*, vol. 41, no. 6, pp. 416–419, 1951, doi: ⁶¹⁸ 10.1364/JOSA.41.000416. ⁶¹⁹
- [28] D. L. Wood and K. Nassau, "Refractive index of cubic zirconia stabilized 620 with yttria," *Appl. Opt.*, vol. 21, no. 16, p. 2978, Aug. 1982, doi: ⁶²¹ [10.1364/AO.21.002978](http://dx.doi.org/10.1364/AO.21.002978). ⁶²²
- [29] E. D. Palik, Ed., *Handbook of Optical Constants of Solids*, vol. 2. ⁶²³ San Diego, CA, USA: Academic, 1998. 624
- [30] A. A. Liles et al., "Frequency modulated hybrid photonic crystal laser by 625 thermal tuning," *Opt. Exp.*, vol. 27, no. 8, pp. 11312–11322, Apr. 2019, ⁶²⁶ doi: [10.1364/OE.27.011312.](http://dx.doi.org/10.1364/OE.27.011312) 627
- [31] A. P. Bakoz et al., "Wavelength stability in a hybrid photonic crystal 628 laser through controlled nonlinear absorptive heating in the reflector," 629 *Light Sci. Appl.*, vol. 7, no. 1, pp. 1–7, Jul. 2018, doi: [10.1038/s41377-](http://dx.doi.org/10.1038/s41377-018-0043-8) ⁶³⁰ [018-0043-8](http://dx.doi.org/10.1038/s41377-018-0043-8). ⁶³¹
- [32] R. Ali, M. Saleem, P. Pääkkönen, and S. Honkanen, "Thermo-optical ⁶³² properties of thin-film $TiO₂ - Al₂O₃$ bilayers fabricated by atomic layer 633 deposition," *Nanomaterials*, vol. 5, no. 2, pp. 792–803, May 2015, doi: ⁶³⁴ [10.3390/nano5020792](http://dx.doi.org/10.3390/nano5020792). ⁶³⁵
- ⁶³⁶ [33] I. Pavlichenko, A. T. Exner, P. Lugli, G. Scarpa, and B. V. Lotsch, 637 "Tunable thermoresponsive TiO_2/SiO_2 Bragg stacks based on sol-gel
638 fabrication methods." *J. Intell. Mater. Syst. Struct.*, vol. 24, no. 18. fabrication methods," *J. Intell. Mater. Syst. Struct.*, vol. 24, no. 18, ⁶³⁹ pp. 2204–2214, Dec. 2013, doi: [10.1177/1045389X12453970](http://dx.doi.org/10.1177/1045389X12453970).
- 640 [34] G. Gulsen and M. N. Inci, "Thermal optical properties of TiO₂ films," ⁶⁴¹ *Opt. Mater.*, vol. 18, no. 4, pp. 373–381, Jan. 2002.
- ⁶⁴² [35] E. D. Palik, Ed., "Thermo-optic coefficients," in *Handbook of Optical* ⁶⁴³ *Constants of Solids*, vol. 5. New York, NY, USA: Elsevier, 1997, ⁶⁴⁴ pp. 115–261, doi: 10.1016/b978-012544415-6.50150-3.
- ⁶⁴⁵ [36] N. N. Dadoenkova, Y. S. Dadoenkova, I. S. Panyaev, D. G. Sannikov, ⁶⁴⁶ and I. L. Lyubchanskii, "One-dimensional dielectric bi-periodic pho-⁶⁴⁷ tonic structures based on ternary photonic crystals," *J. Appl. Phys.*, ⁶⁴⁸ vol. 123, no. 4, Jan. 2018, Art. no. 043101, doi: 10.1063/1.5011637.
- ⁶⁴⁹ [37] V. S. Chirkin, *Thermophysical Properties of Materials*. Moscow, Russia: ⁶⁵⁰ Fizmatgiz, 1959.
- ⁶⁵¹ [38] I. H. Malitson, "Interspecimen comparison of the refractive index of ⁶⁵² fused silica," *J. Opt. Soc. Amer.*, vol. 55, no. 10, pp. 1205–1209, 1965,
- ⁶⁵³ doi: 10.1364/JOSA.55.001205. ⁶⁵⁴ [39] Y. S. Dadoenkova et al., "Confined states in photonic-magnonic ⁶⁵⁵ crystals with complex unit cell," *J. Appl. Phys.*, vol. 120, no. 7,
- ⁶⁵⁶ pp. 73903–73909, 2016, doi: 10.1063/1.4961326. ⁶⁵⁷ [40] G. G. P. Agrawal, P. L. Kelley, I. P. Kaminow, and G. G. P. Agrawal, ⁶⁵⁸ "Nonlinear fiber optics," in *Proc. 21st Century Nonlinear Sci. Daw.*, ⁶⁵⁹ 2001, p. 467, doi: 10.1016/B978-0-12-397023-7.00018-8.
- ⁶⁶⁰ [41] L. F. Abbott and W. G. Regehr, "Synaptic computation," *Nature*, ⁶⁶¹ vol. 431, no. 7010, pp. 796–803, Oct. 2004, doi: 10.1038/nature03010.
- ⁶⁶² **Ivan S. Panyaev** was born in Ulyanovsk, Russia, in 1990. He graduated
- ⁶⁶³ from Ulyanovsk State University, Ulyanovsk, in 2012, majoring in radio-
- ⁶⁶⁴ physics and electronics. He received the Ph.D. degree in optics from ⁶⁶⁵ Ulyanovsk State University in 2017.

666 From 2015 to 2021, he worked in research positions with the Lab- oratory of Quantum Electronics and Optoelectronics, Ulyanovsk State University. Currently, he works as a Senior Researcher with the Labo- ratory of Nonlinear and Microwave Photonics, Technological Research Institute named after S. P. Kapitsa, Ulyanovsk State University. He is the coauthor of one book chapter and more than 30 articles. His research interests are photonic crystals, photonic integrated circuits, fiber laser optics, and nonlinear optics.

 Dmitry G. Sannikov was born in 1974. He graduated from Lomonosov Moscow State University, Ulyanovsk Branch [presently, Ulyanovsk State University (UlSU)], Ulyanovsk, Russia, in 1996, majoring in solid-state 677 physics. He received the Ph.D. degree in physical and mathematical sciences in 2011.

679 He currently works as a Docent and a Professor with the Department ⁶⁸⁰ of Radio Physics and Electronics, UlSU, and a Researcher with the Tech-

⁶⁸¹ nological Research Institute, UlSU. His research interests are integrated ⁶⁸² optics, photon crystals, optical waveguides, and laser environments.

Yuliya S. Dadoenkova was born in Donetsk, Ukraine, in 1987. She 683 received the master's degree in physics from Donetsk National University, 684 Donetsk, in 2008, the Ph.D. degree in magnetism from the Donetsk 685 Institute for Physics and Engineering, Donetsk, in 2013, and the Habili- 686 tation degree to conduct research (HDR) from the University of Western 687 Brittany, Brest, France, in 2022.

She was a contractual Senior Researcher with Yaroslav-the-Wise 689 Novgorod State University, Veliky Novgorod, Russia, from 2015 to 2017, 690 and with the Laboratory of Quantum Electronics and Optoelectronics. 691 Ulyanovsk State University, Ulyanovsk, Russia, from 2014 to 2019. 692 From 2019 to 2021, she was a Postdoctoral Researcher with the École 693 Nationale d'Ingénieurs de Brest (ENIB), Plouzané, France. She is cur- ⁶⁹⁴ rently a contractual Associate Professor at ENIB and at the CNRS Lab- 695 STICC Laboratory, Brest. She is the coauthor of three book chapters and 696 more than 50 articles. Her research interests include the manipulation 697 of electromagnetic waves in photonic structures based on functional 698 materials, nonspecular effects of electromagnetic and spin-wave beams, 699 and the amplification of surface plasmon polaritons. The manufacturer of 700

Nataliya N. Dadoenkova was born in Donetsk, Ukraine, in 1964. She $_{701}$ received the Diploma degree in physics from Donetsk State Univer- 702 sity, Donetsk, and in 1986 and the Ph.D. degree in theoretical and 703 mathematical physics and the D.Sc. degree from the Donetsk Institute 704 for Physics and Engineering, National Academy of Sciences (NAS) of 705 Ukraine, Donetsk, in 1994 and 2008, respectively. The manner of the manner of the manner of the manner of the

IS The Theorem is the state of the state of the state of the state is the state is the state of the sta In 1988, she started her scientific activity at the Donetsk Institute 707 for Physics and Engineering, Academy of Sciences of Ukrainian SSR, 708 Donetsk. From 1994 to 2000 and 2002 to 2014, she worked in the ⁷⁰⁹ research positions with the Department for Theory of Electronic and 710 Kinetic Properties of Nonlinear Systems, Donetsk Institute for Physics 711 and Technology, NAS of Ukraine. From 2000 to 2002, she was a 712 Postdoctoral Fellow with the Institute of Microstructure Physics of the 713 Max Planck Society, Halle/Salle, Germany. She was a contractual Senior 714 Researcher with the Laboratory of Quantum Electronics and Optoelec-
 715 tronics, Ulyanovsk State University, Ulyanovsk, Russia, from 2014 to 716 2021. Since 2020, she has been with the Galkin Donetsk Institute for 717 Physics and Engineering, Donetsk, where she works as a Leading 718 Researcher. She is the coauthor of five book chapters and more than 719 180 scientific publications. Her current research interests include the ⁷²⁰ theory of linear and nonlinear optical effects in uniform and layered 721 magnetic materials, photonic crystals based on functional materials, and 722 photonic crystals with complex unit cells. The matrix of the complex unit cells.

AQ:5