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Abstract: Moving differential and dynamic window moving averaging are simple and well-known 

signal processing algorithms. However, the most common methods of obtaining sufficient signal-

to-noise ratios in distributed acoustic sensing use expensive and precise equipment such as laser 

sources, photoreceivers, etc., and neural network postprocessing, which results in an unacceptable 

price of an acoustic monitoring system for potential customers. This paper presents the distributed 

fiber-optic acoustic sensors data processing and noise suppression techniques applied both to raw 

data (spatial and temporal amplitude distributions) and to spectra obtained after the Fourier trans-

form. The performance of algorithms’ individual parts in processing distributed acoustic sensor’s 

data obtained in laboratory conditions for an optical fiber subjected to various dynamic impact 

events is studied. A comparative analysis of these parts’ efficiency was carried out, and for each 

type of impact event, the most beneficial combinations were identified. The feasibility of existing 

noise reduction techniques performance improvement is proposed and tested. Presented algorithms 

are undemanding for computation resources and provide the signal-to-noise ratio enhancement of 

up to 13.1 dB. Thus, they can be useful in areas requiring the distributed acoustic monitoring sys-

tems’ cost reduction as maintaining acceptable performance while allowing the use of cheaper hard-

ware. 

Keywords: distributed acoustic sensing (DAS); denoising; noise reduction; optical fiber sensors;  

signal-to-noise ratio (SNR); data processing 

 

1. Introduction 

Fiber-optic distributed acoustic sensors (DAS) based on optical time-domain reflec-

tometry (OTDR) technology were proposed more than 40 years ago [1]. Their develop-

ment is directly related to approximately simultaneous creation of low loss optical fiber 

[2] and an OTDR itself as their manufacturing quality control method [3]. Since then, this 

area has grown very rapidly. Utilizing the Rayleigh backscattering of light propagating in 

an optical fiber, coherent optical reflectometry—CO-OTDR [4], phase-sensitive optical re-

flectometry—φ-OTDR [5–9], and optical frequency domain reflectometry—OFDR [10–14] 

have been proposed. In contrast to them, Brillouin and Raman reflectometry [15–21] use 
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various types of inelastic scattering. Many of these technologies are adapted to perceive 

both static and dynamic external impacts on optical fiber, such as sound and other me-

chanical vibrations, temperature variations, and mechanical stress. Over the last few dec-

ades, acoustic monitoring has gained great popularity in many industries such as oil and 

gas production [22], processing [23], transportation [24], geophysics and mineral deposits 

exploration [25], protection of territories [26], and structural integrity monitoring of vital 

engineering constructions [27–29]. At the moment, such monitoring is usually performed 

by fiber optic DASs (due to their intrinsic advantages) using phase-sensitive technology 

(φ-DAS) implemented with the use of high-coherence light sources and direct or hybrid 

backscattering detection, since conventional OTDR is not sensitive to dynamic defor-

mations, has a higher noise level, and requires additional time for the obtained data aver-

aging. Moreover, its event response time is generally worse. At the same time, the neces-

sity to use a highly coherent radiation source, a high-speed optical modulator [30], a pho-

todetector, and ADC, as well as several optical amplifiers in DAS makes them rather ex-

pensive. Therefore, such systems are widespread only in top-financed areas of science and 

technology. However, state-of-the-art studies are more and more often dedicated to fiber 

optic acoustic sensors applications on behalf of less funded industries; for example, agri-

culture [31] and ecology [32,33]. It is reported that meteorology and biology [34,35] pos-

sess the need for a distributed acoustic sensor with sensitivity to acoustic events with cer-

tain frequencies. Thus, a sensor capable of satisfying such requests must have the most 

optimal price-performance ratio. This can be achieved by cost reduction, which can result 

from excluding some expensive setup elements and by bringing algorithms to the fore-

front instead of hardware where possible. 

The state-of-the-art concept of processing distributed fiber-optic sensor signals 

mainly provides for automatic events classification occurring at a certain distance from 

the point where radiation is injected into the sensor. For this, specially created databases, 

correlation algorithms, neural networks, empirical mode decomposition, and variational 

mode decomposition are used [36–39]. In fact, the main idea of these studies is to decom-

pose the signal not into the frequency spectrum using FFT, but into some modes that de-

scribe one or another physical process. In the pioneering work of [38], the variational 

mode decomposition technique for threat classification in phase-OTDR-based DAS sys-

tems was studied for the first time. To perform the high-precise processing, the Wavelet 

filtering technique was used before the decomposition, for the denoising of the raw data, 

and then high-pass filtering was applied. Another stage of denoising was the application 

of the autocorrelation function. The correlation peaks were interpreted as events, and only 

after that, the variational mode decomposition technique was applied to classify different 

impacts on the sensor. The mentioned study [38] showed that the raw signal of a distrib-

uted fiber optic sensor is quite difficult to use for decomposition or for machine learning, 

so it still requires pre-processing: for example, by Wavelet and Curvelet filtering or/and 

correlation algorithms [39–42]. Primary processing of raw data should be implemented 

on simple mathematical operations, since the volume of processed data is quite high, and 

the algorithms themselves are implemented with the use of programmable microcontrol-

lers. Basically, these are simple algorithms, which are various types of integral or differ-

ential averaging of a discrete signal in a scanning window [43–45]. The number of simple 

mathematical operations at each individual moment when the scanning window is at a 

certain point in the trace rarely exceeds the number of discrete counts in this window. 

That is why it was decided to use just such methods for pre-processing data received from 

a distributed acoustic sensor. 

Thus, the key task of this study is to test, evaluate, and improve the effectiveness of 

simple signal processing algorithms acting jointly or separately. Backscattered light traces, 

obtained using distributed fiber optic acoustic sensor subject to vibration impact and 

based on phase-sensitive time domain reflectometry, are considered as an input for the 

techniques under research. As it was mentioned above, it is vital to use simple algorithms 

here since the volume of data acquired with such instruments is generally quite large. The 



Algorithms 2023, 16, 217 3 of 15 
 

algorithms taken into account are expected to give a significant increase in the signal-to-

noise ratio and, consequently, better distinguish signal and noise. This will allow the use 

of less expensive components, broader-band lasers, for instance, in the design of such 

tools. Various simple digital data processing methods, such as moving differential and 

dynamic window averaging, have already found their way into various fields of science 

and technology, proving their effectiveness. Distributed acoustic sensor’s data processing 

involves several stages and at each of them, supplementary changes can be made to the 

algorithm. Individual parameters of data processing methods may be subject to variation. 

The objective of this work is to determine the optimal signal processing stages at which 

one or another method can be involved in the calculation process, as well as to determine 

the basic parameters for their use. Similar results were obtained for various optical fiber 

samples and instrument configurations (on the order of 10s). The demonstration of the 

results is carried out on data that provides the most convenient visualization. 

2. Approach 

Such a sensor can be, for example, a system similar to φ-DAS, but using a pulsed, 

highly coherent current-controlled light source, eliminating the need to use an optical 

modulator and its control system, as well as only one optical amplifier and direct signal 

detection by a photodetector and ADC (Figure 1) without phase information extraction. 

 

Figure 1. One of the cost-effective DAS prototypes used to obtain experimental data. PC—personal 

computer, DAC—digital-to-analog converter, EDFA—erbium-doped fiber amplifier, ADC—ana-

log-to-digital converter. 

Nevertheless, when the length of the system approaches the coherence length of the 

light source used, the signal-to-noise ratio (SNR) decreases significantly, and thus the 

problem of distinguishing the useful signal from noise becomes quite relevant. At the mo-

ment, artificial intelligence technologies, such as neural networks, have become wide-

spread in the field of DAS noise reduction [46]. However, they usually require a lot of 

computing resources and training data. This can negatively affect the final cost of the sys-

tem. 

2.1. Averaging and Moving Differential 

The authors of [47] present a relatively simple algorithm having an acceptable effi-

ciency under the research conditions. The algorithm operation was tested by processing 

data obtained with the DAS system using two different sources of radiation and two dif-

ferent sources of acoustic events: a shaker located at a distance of 3500 m from the sensitive 

element input facet and a piezoelectric transducer located at a distance of 1800 m, at 
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frequencies exposure to 350, 500, 1200, 3700, and 5600 Hz. The sensitive element of the 

sensor consisted of 4 km of SMF-28 telecommunications optical fiber (Figure 2). 

 

Figure 2. Experimental setup and data samples (φ-DAS traces) acquired using a semiconductor (a) 

and a commercial fiber laser (b). The peaks denote the acoustic events that took place along the 

fiber. DFB—distributed feedback, AOM—acousto-optic modulator, BPF—bandpass filter, PM—

polarization-maintaining. 

As a rule, any DAS technology works as follows: a light pulse is injected into the fiber 

optic sensing element through an optical circulator or coupler. As it propagates along the 

fiber, a part of its energy is scattered in all directions every moment on intrinsic refractive 

index inhomogeneities of subwavelength scale. Sometimes the inhomogeneities in the fi-

ber could be specially induced (like fiber Bragg gratings, FBGs). A part of the scattered 

radiation guided by the optical fiber core begins to propagate in the direction opposite to 

the probing. The optical circulator or splitter at the input end of the fiber transmits this 

signal to the photodetector. The arrival time of backscattered signal from a specific point 

in the optical fiber unveils the information about the distance to this point, and its inten-

sity, can, for example, give evidence of an acoustic impact presence or absence. This is 

possible due to the fact that acoustic waves are able to exert the pressure to an optical fiber 

and thus modulate its core refractive index and the positions of the inhomogeneities caus-

ing Rayleigh backscattering (and, therefore, its intensity in this location), with the fre-

quency they have themselves. Thus, DAS raw data is a sequence of φ-OTDR traces rec-

orded continuously for some time, that is, the dependences of the backscattering intensity 

on time. They can be arranged in the form of a matrix, the rows of which contain the 

backscattering intensity distribution along the length of the fiber, and the columns, respec-

tively, the backscattering intensity distribution at a specific point of the fiber over time. 

The data acquired by the sensor from [47] had exactly the same form. An N M  

 nms matrix consisted of M = 8000 rows, corresponding to the distribution along the 

fiber (trace) and N = 932 columns, corresponding to the time distribution (932 traces se-

quentially obtained by the sensor). The noise suppression algorithm consisted of two 

parts. First, each element was averaged over the 20 nearest elements of the row—in the 

spatial domain: 

1
b

nm nk

a

s s w− 
 =    

 
  (1) 

where w = 21 and k increases from a = m − 0.5(w − 1) to b = m + 0.5(w − 1). 

This allows one to reduce noise outside the spatial spectrum and make the resulting 

traces smoother. However, it reduces the spatial resolution in proportion to the number 
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of neighboring elements selected to average the given one. In the second part, the moving 

differential algorithm [48] was applied to the time domain-matrix columns. This also 

made it possible to reduce the noise background and to obtain, after performing fast Fou-

rier transform (FFT) over the matrix columns, frequency spectra with pronounced peaks 

at the frequencies of the vibrations applied to the sensor (Figure 3).  

 

Figure 3. Frequency spectrum of events that took place at 3500 m along the fiber acquired using 

semiconductor laser (a) and a commercial fiber laser (b). The insets show the value of the SNR as a 

function of frequency. The setup used is shown in Figure 2. 

Since the bandwidth of the self-injection locked laser was considerably higher than 

that of the commercial one used, the bandwidth of the acoustic event recorded with it has 

consequently broader spectrum in contrast to that of the event recorded using commercial 

laser under the same conditions. 

The presented algorithm, together with the modification of the equipment, made it 

possible to cut the DAS systems’ cost, since it became possible to use a telecommunication 

semiconductor laser with distributed feedback in them. This laser had the bandwidth of 1 

MHz. The hardware modification consisted in creating a mode of its operation with the 

external resonator frequency self-injection locking. This reduced the bandwidth to 6 kHz. 

The traces obtained using such a laser source and their array processing with the pre-

sented technique allowed one to use the system as a DAS with the quality of the results 

practically the same as that provided by the use of a commercial fiber laser with a band-

width of 100 Hz as a laser source. The role of the acquired data quality criterion was per-

formed by SNR. The difference in SNR estimated from data obtained using a commercial 

fiber laser and a modified semiconductor laser with additional processing of the results 

was about 0.4 dB. In the entire frequency range of the applied acoustic impacts, the SNR 

was at least 8 dB. As the main advantage of this algorithm, one can note efficiency with 

general simplicity. As a disadvantage, there is a decrease in spatial resolution, which is 

very important parameter for distributed sensing [49–53]. 

2.2. Dynamic Spectrum Averaging 

Researchers from [54], presented an algorithm for OFDR data processing. It is an av-

eraging with a variable length (dynamic) window. The algorithm includes the following 

steps: 

1. A choice of scanning window with the length of w’, which allows fitting the most 

significant event on an OFDR trace consisting of N samples into it (Figure 4a); 

2. The process of spatial domain scanning using this window. During the scanning pro-

cess, for all points from w’/2 to N − w’/2, the standard deviation σ of the signal values 

P at the points included in this window is calculated; 

3. Normalization of the obtained σ values to 1 (σ = σnorm); 
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4. A filtered trace (Figure 4b) calculation according to 

2
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−  −  → = = −  (2) 

 

 

Figure 4. OFDR-trace before (a) and after (b) processing. IOM—integrated optical modulator. 

Describing the proposed method in simple terms, it can be said that the algorithm 

focuses on sharp and significant changes in the spectrum. The higher the peak found when 

moving along a discretely given spectrum, the fewer samples on both sides of it will be 

used for averaging. The more abruptly the event gains its maximum intensity, the less it 

will be blurred. In order to minimize dynamic distortions of the original signal, in this 

study, the dependence of the window size on the standard deviation is assumed to be 

linear. Further work is expected to study the influence of the nature of this dependence 

on the output signal. 

As an advantage of the algorithm, the simplicity and low computing resources re-

quirements are also worth noting, and, in addition, the potential ability to work with any 

data. The main disadvantage here seems to be the possible loss of a low-intensity signal. 

Since an OFDR-trace is actually an FFT spectrum of backscattered data, and therefore has 

a similar nature to DAS spectra, it was decided to test this algorithm to improve the quality 

of distributed acoustic sensor data. 

3. Results 

As a part of the DAS optimization problem, it was decided to study the described 

algorithms operation in parts, in whole and together with various types of events recorded 

by the proposed design sensor (Figure 1). The sensing element consisted of 1 km of SMF-

28 optical fiber. Four types of data were used for processing: 1 distributed event with a 2 

kHz frequency, 1 distributed event with a 6.5 kHz frequency, 1 pointwise event with a 3 

kHz frequency and harmonics at frequencies of 6 and 9 kHz, and one pointwise event 

with a 10 kHz frequency (Figure 5). Each data set contained both general background 

noise and signals that stood out against it and were not related to the useful one and did 

not depend on it (vertical bands corresponding to a certain frequency and recorded 

throughout the sensitive element, Figure 5). The frequency range taken into consideration 

was spaced between 0 and 11 kHz. 
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Figure 5. DAS data sets used for noise reduction techniques testing. (a) 2 kHz distributed event; 

(b) 6.5 kHz distributed event; (c) 3 kHz pointwise event with overtones frequencies of 6 and 9 

kHz; (d) 10 kHz pointwise event. The setup used is shown in Figure 1. 

The study of the noise reduction technique's effectiveness was carried out with those 

heat maps cross-sections (points of the optical fiber), in which the event had the highest 

amplitude, and in the case of a distributed event, with a frequency spectrum previously 

averaged over several points of the optical fiber. For each type of data, the algorithms of 

averaging over 20 neighboring elements in the spatial domain (SA—spatial averaging) 

and the moving differential (MD) in the time domain were first applied separately, and 

then together (filtering—F). After that, each of the four obtained results (NF—no filtering, 

SA, MD, and F) was subjected to the FFT, normalized to 1, and presented as input to the 

averaging algorithm with a dynamic window in the spectral domain (FDDA—frequency 

domain dynamic averaging). 

For data with a distributed event at a frequency of 2 kHz, the combination of SA and 

FDDA algorithms demonstrated the most significant increase in SNR by 1.6 dB (Figure 

6c). Moreover, it was the SA algorithm that made it possible to eliminate noise peaks in 

the signal (Figure 6b). Presumably, this is due to the fact that they have a rather unstable 

amplitude in the spatial domain. The negative effects of the SA, MD algorithms, and their 

combination (F) resulting in an unsufficient increase or decrease of SNR are described in 

Section 4. 

  

Figure 6. The steps of 2 kHz event (Figure 5a) data processing. (a) Original spectrum; (b) spectrum 

obtained after SA algorithm filtering; (c) spectrum resulting from SA and subsequent FDDA algo-

rithms filtering. 

However, it can be seen, that the FDDA algorithm, in its turn, not only exhibits edge 

effects—the noise level in the spectrum gradually increases from the edges to the middle 

but also places it above the zero level, whereas the spectrum does not contain components 

with an amplitude of less than a certain value, but greater than zero. These effects are 

explained by the fact that at the scanning dynamic window position i = 0, the first window 

element position in the array of discrete samples is equal to −w/2, and at i = N, the last 

window element falls to the position of N + w/2. It is easy to determine that these positions 
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do not exist in the array of discrete samples, so they were initially replaced by zeros. The 

larger the window on the array boundaries, the more impact zero-padded areas introduce. 

All this leads to the fact that the resulting data is allocated on a kind of “pedestal”. Since 

the frequencies forming this pedestal are not physically present in the spectrum, they can 

be determined as noise and can be eliminated. The FDDA noise elimination algorithm 

modification can be represented as follows: first, a one-dimensional array M of input data 

with dimensions [0, (3N−1)] is created. It is filled according to 

( ( )/ )i i N floor L M NM P− =  (3) 

where floor(x) returns an integer part of x, L(x)—returns x length. 

Thus, the values of the array M will correspond to the following original signal values 

Р: 

2

, [0, ( 1)];

, [( 1), (2 1)];

, [(2 1), (3 1)].

i i

i i N

i i N

M P i N

M P i N N

M P i N N

−

−

=  −

=  − −

=  − −

 (4) 

Next, the resulting array M is processed according to Equation (2), and its values are 

replaced with the new ones. The received data is used to form a new M’ array of [0,(N−1)] 

size: 

M’i = Mi+N (5) 

After that, the sample m representing the minimum value is found in the array M’, 

by iterative enumeration. M’ values are overwritten as follows: 

M’i = M’I−m (6) 

Then the values of M’i are normalized to 1. Thus, the elimination of the noise pedestal 

in the processed spectrum is achieved. The FDDA modification made it possible to reach 

an increase in SNR in the studied case by 9.7 dB (Figure 7a). Therefore, for an distributed 

event with a 2 kHz frequency, the SNR turned out to be 20.6 dB after processing. In the 

initial data, it was equal to 10.9 dB. The results of distributed 6.5 kHz frequency event 

processing were practically the same (Figure 7b)—the considered combination of algo-

rithms provided an increase in SNR by 13.1 dB. 

  

Figure 7. Event spectra before and after data processing. The insets show the algorithm used for it. 

(a) 2 kHz; (b) 6.5 kHz; (c) 3 kHz; (d) 10 kHz acoustic events. 

For a frequency spectrum of a 3 kHz pointwise event with harmonics, the SNR was 

14.7 dB before the processing. The best way to suppress noise in this case was provided 

by the FDDA algorithm. The increase in SNR was 6.6 dB (Figure 7c). 

The original frequency spectrum in the case of a pointwise 10 kHz impact had an 

SNR of about 13.4 dB. Its greatest increase during noise suppression techniques tests was 

provided by the combination of MD and FDDA algorithms—5.2 dB (Figure 7d). This is 

probably due to the fact that the MD algorithm with the smallest possible window of 2 

points played a role of a high-pass filter, significantly reducing the signal amplitude, and, 

accordingly, the noise in the frequency range below 10 kHz. 
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4. Discussion 

The results of experimental data processing demonstrate that under various condi-

tions, the best noise suppression is achieved using different algorithms, individually or in 

combination. The low efficiency of certain algorithms in some situations is inevitably as-

sociated with the peculiarities of their work. For example, the MD algorithm, which acts 

here as a high-pass filter, is prone to the manifestation of window effects: with a large 

window length, the spectrum takes the form of a values sequence which are tending to 0 

or to the maximum with a certain constant period, so both noise and signal are reduced 

or increased in this process. In the case of the minimum length of the MD window, the 

maximum gain falls on the frequency region around 10 kHz. Since the region above 11 

kHz was not taken into consideration, a significant increase in the noise level did not affect 

the SNR. However, in the case of the 3 kHz event frequency, this effect began to provide 

a significant contribution, affecting not only the SNR but also distorting the intensity val-

ues in the useful signal. This resulted in the harmonics with frequencies of 9 and 3 kHz 

getting an amplitude greater than that of the fundamental tone (Figure 8d). 

  

Figure 8. A demonstration of considered noise filtering techniques disadvantages. Spectrum of (a) 

10 kHz event before processing; (b) 10 kHz event resulting from SA algorithm processing; (c) 3 

kHz event before processing; (d) 3 kHz event resulting from MD algorithm processing. 

Describing the case of 10 kHz event, it should be noted that the SA algorithm pro-

cessing had a negative impact here, since it led to the rise of spurious peaks associated 

with noise that were almost imperceptible in the original spectrum (Figure 8a). 

The FDDA algorithm, which proved to be quite effective in all the cases studied, nev-

ertheless, has at least one drawback. If the useful signal components are located close 

enough in the frequency domain, the noise components between them will be reduced 

less compared to the area near the single-frequency event. The modified algorithm 
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significantly reduces the effect, but does not eliminate the problem entirely (Figure 9b). 

This is due to the peculiarities of this algorithm operation and, in particular, the mecha-

nism for the selection of window size, as the latter depends on the presence of the signifi-

cant signal level increases nearby. In the case of the 3 kHz event, this manifested itself in 

the form of a spectrum noise component convex shape, which slightly decreased the SNR 

relative to the expected value (Figure 9c). 

  

Figure 9. 3 kHz event spectrum. (a) Initial; (b) processed with initial FDDA algorithm; (c) Pro-

cessed by modified FDDA algorithm. 

As already noted, the presented methods have both advantages and disadvantages. 

In general, when using both algorithms, part of the useful signal may be missed. It can be 

either a high-frequency signal or a signal of any frequency, but with a relatively low am-

plitude. To eliminate this shortcoming in the future, it is advisable to use the methods of 

machine learning and artificial intelligence [55–57], which can be used in combination 

with the described approaches. In particular, artificial intelligence can automatically select 

the integration and differentiation steps of a discrete signal when processing by the MA-

MD method. This will improve the filtering quality and reduce the computation time since 

the interactive calculations will be replaced by a fairly fast neural network algorithm. An-

other option that improves the processing quality can be the use of artificial intelligence 

to control the influence of the results obtained by each of the methods on the final physical 

quantities. We have already successfully demonstrated such an approach for a distributed 

fiber-optic sensor based on stimulated Brillouin scattering [21]. In this work, the neural 

network in the learning process determines the effect of each of the Brillouin frequency 

shift extraction methods on achieving the most accurate result for each Brillouin gain spec-

trum with certain parameters. The increase in accuracy in this work was 10% (in compar-

ison with the value obtained by averaging the results provided by all used methods). We 

are convinced that in the future it is necessary to apply this approach to data obtained 

using a distributed fiber optic sensor based on Rayleigh scattering. Lastly, the MD method 

can be applied in the frequency domain, just like FDDA, and the neural network will de-

termine their contribution to the detection accuracy of the required frequency with maxi-

mum SNR. While using software methods to improve signal quality, one should not forget 

about the possibilities of hardware modification of the optoelectronic system [58–63] and 

sensor fiber or cable [57, 64–69]. We believe that these works will be the priority of our 

scientific group in the future. 

5. Conclusions 

To conclude, it should be noted that this work solved one of the DAS software opti-

mization problems. This was done by studying the operation of noise reduction algo-

rithms that do not impose the significant requirements for the computing devices perfor-

mance in various scenarios of impact on the sensor. The algorithms or their combinations 

demonstrating the highest efficiency were identified for each type of event, modifications 

were proposed to increase their performance. A summary of the comparison results is 

given in Table 1. 
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Table 1. Results of the considered noise reduction algorithms comparison. 

Event Frequency, kHz Event Type 
Most Efficient 

Technique 
SNR Increase, dB 

10 Pointwise MD+FDDA 5.2 

3 Pointwise with harmonics FDDA 6.6 

2 Distributed SA+FDDA 9.7 

6.5 Distributed SA+FDDA 13.1 

The first column in Table 1 corresponds to the frequency at which the fiber sensor 

was affected. This information is provided only to associate the results presented in the 

table with the figures above. As shown by numerous experiments, the efficiency of the 

filtering algorithms does not depend on frequency within the linear part of the sensor 

frequency response. Our studies have also shown that it is expedient to use the FDDA 

method after using the other considered algorithms. From Figure 4, for example, it can be 

seen that the first peak in the spectrum after processing turned out to have a significant 

spreading at its base. Thus, the limitation of this method is the lack of capacity to detect 

several neighboring frequencies. Another flaw, already mentioned above, is the disap-

pearance of low-intensity oscillations from the useful signal under some conditions. In 

other cases, the FDDA method gives a noticeable increase in the signal-to-noise ratio, both 

when used alone or in combination with other algorithms. 

We believe that the search for the most efficient data processing algorithms, along 

with the use of cost-consuming narrow-band laser solutions reported recently, can meet 

the demand for the use of DAS in an ever-expanding range of fields of science and tech-

nology. 

The results obtained in this work can be applied to a wide range of problems. First, 

the presence of an inexpensive laser in the monitoring system will make it available not 

only for geological exploration, monitoring of pipelines, and mines, but also for new ap-

plications such as urban traffic monitoring and security systems [70–73]. New areas will 

open up where DAS technology can be applied. In addition to studies already carried out 

using a distributed acoustic sensor on the behavior of the red weevil in palm trees [74], 

acoustic observations of cicadas and bees seem to be the most obvious future work [75,76]. 

Perhaps this will provide key data to address issues related to declining bee populations 

around the world. 

Secondly, the use of the proposed simple filters in combination or separately allows 

obtaining data with increased SNR when studying new materials and mechanical designs. 

A huge number of works are devoted to non-destructive testing, which indicates the im-

portance of this area [77–81]. In a number of engineering tasks, it is required to obtain data 

on all spectral components: on the fundamental tone and additional harmonics [82]. In 

such cases, the MA and MD filters will give the desired SNR gain and allow the full spec-

trum to be saved for analysis. In tasks where it is required to obtain information about the 

fundamental tone of the acoustic vibration and to suppress the remaining harmonics 

along with noise, it is advisable to apply the FDDA filter after using the MA and MD 

algorithms. Such challenges may arise during the operation of vortex flowmeters or dur-

ing the use of acoustic sensors for diagnosing new devices and products [83–85]. 

Another important and dynamically developing area, where the technology of dis-

tributed fiber-optic sensors can be applied in the very near future, is a smart home, smart 

city, smart production, and the Internet of Things [86–88]. With the spread of such sys-

tems, the issues of energy saving and increasing the lifetime of individual elements be-

come more and more relevant. The DAS system in combination with the MA-MD and 

FDDA filters can be used to train and operate the scheduling algorithm based on learning 

automation for Internet of Things (SALA-IoT) [89]. We believe that this will speed up 

training, and at the operational stage, it could simplify the sensor’s design. 
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